10.15 Complex Function and Rules
Revision
\(z_0=a+ib\in\mathbb{C}\), then \(mult_{z_0}:\mathbb{C}\to \mathbb{C}\) where \(x+iy\mapsto (a+ib)(x+iy)\) is \(\R\)-linear
If we see \(\mathbb{C}=\R^2\), are identified \(mult_{a+ib}\longleftrightarrow 2\times 2\) matrix \(\begin{pmatrix} a&-b\\ b&a \end{pmatrix}\) because $ \begin{pmatrix} a & -b \ b & a \end{pmatrix} \cdot \begin{pmatrix} x \ y \end{pmatrix}=\begin{pmatrix} ax - by \ ay + bx \end{pmatrix}$ and \((a+ib)(x+iy)=(ax-by)+i(ay+bx)\)
Moreover, \(mult_{e^{i\alpha}}=\) rotation in angle \(\alpha\) and \(mult_r=\) expansion/contraction by \(r\)
Definition
\(f:\Omega\to \mathbb{C}\) where \(\Omega\subset \mathbb{C}\) is an open set, then \(\exists z_0\in \Omega=\text{Dom}(f)\)
\(\exists r:D_{r}(z_{0})\subset \Omega\), then \(\left\{z/|z-z_0|<r\right\} \subset \Omega\)
Let \(|h|<r\) which is small and complex, then \(z_0+h\) is still in the domain
Consider \(\lim_{h\to 0}\frac{f(z_{0}+h)-f(z_{0})}{h}=?\)
Def: \(f\) is differentiable in the complex space at \(z_0\) if \(\exists\lim_{h\to 0}\frac{f(z_{0}+h)-f(z_{0})}{h}=:f'(z_{0})\)
Remark
\(\lim_{h\to 0}\frac{f(z_{0}+h)-f(z_{0})}{h}=f'(z_{0})\iff \lim_{h\to 0}\frac{|f(z_{0}+h)-f(z_{0})-f'(z_{0})\cdot h|}{|h|}=0\)
\(f'(z_{0})\cdot h\) is linear in \(h\), that is function \(mult_{f'(z_0)}:\mathbb{C}\to \mathbb{C}\) is linear with \(h\)
If \(f\) is differentiable (in the \(\mathbb{R}^2\) "classical" sense) at \(z_0\), then its differential at \(z_0\) is given by multiplication by the complex number \(f'(z_{0})=a+ib\).
The differential of \(f\) is a linear map that takes an increment \(h\in\mathbb{C}\) to a new increment in \(\mathbb{C}\)
The precise statement is \(f(z+h)=f(z)+Df(z)[h]+o(|h|),\quad Df(z)[h]=f'(z)\,h.\)
Cauchy-Riemann conditions
We know \(f(z) = f(x+iy) = u(x,y) + iv(x,y)\) where \(u,v: \Omega \subseteq \text{Dom}(f) \longrightarrow \mathbb{R}\) and \(z=x+iy\)
Example: \(f(z) = z^2 = (x+iy)^2\) \(=x^2 - y^2 + 2ixy\) where \(u(xy) = x^2 - y^2\) and \(v(x,y) = 2xy\)
\(f\) is complex-diff. at \(z_{0} \iff\) \(\exists \lim\limits_{h=h_1+h_2i \to 0}\frac{u(x+h_{1},y+h_{2}) + iv(x+h_{1},y+h_{2}) - u(x,y) - iv(x,y)}{h_{1}+h_{2}i}= a+ib = f'(z_{0})\)
Cauchy-Riemann Conditions: Suppose this limit exists, let \(x+iy=z_0\), \(h=h_1+ih_2=\Delta z = \Delta x+i\Delta y\)
Then \(f'(z_0)=\lim_{\Delta z \to0}\frac{f(z+\Delta z) - f(z)}{\Delta z}= \frac{f(z+\Delta x+i\Delta y) - f(x,y)}{\Delta x+i\Delta y}\)
Then \(\exists \lim_{\substack{h_1\to 0 \\ h_2=0}}(...) = \lim_{\Delta x \to 0}\frac{f(z+\Delta x)-f(z)}{\Delta x}= f'(z_{0})\)(A) and \(\lim_{\substack{h_1=0 \\ h_2\to 0}} (...) = \lim_{\Delta y \to 0} \frac{f(z+i\Delta y)-f(z)}{i\Delta y} = f'(z_0)\)(B)
(A) \(\lim_{\Delta x \to 0}\frac{u(x+\Delta x, y) + iv(x+\Delta x, y) - u(x, y) - iv(x, y)}{\Delta x}= \lim_{\Delta x \to 0}\frac{u(x+\Delta x, y) - u(x, y)}{\Delta x}+ \lim_{\Delta x \to 0}i \frac{v(x+\Delta x, y) - v(x, y)}{\Delta x}= \frac{\partial u}{\partial x}+ i \frac{\partial v}{\partial x}\)
(B) \(\lim_{\Delta y \to 0}\frac{u(x, y+\Delta y) + iv(x, y+\Delta y) - u(x, y) - iv(x, y)}{i \Delta y}= \lim_{\Delta y \to 0}-i \left( \frac{u(x, y+\Delta y) - u(x, y)}{\Delta y}\right) + \lim_{\Delta y \to 0}\frac{iv(x, y+\Delta y) - iv(x, y)}{i\Delta y}= \frac{\partial v}{\partial y}- i \frac{\partial u}{\partial y}\)
\((A)=(B)\ \Rightarrow\ \frac{\partial u}{\partial x}+i\,\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i\,\frac{\partial u}{\partial y}\quad\text{in }\mathbb{C}\Rightarrow \operatorname{Re}(\cdot)\ \text{and}\ \operatorname{Im}(\cdot)\ \text{are the same}\)
C–R equations \(\begin{cases} \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \\\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \end{cases}\)
Consider \(F:\mathbb{R}^{2}\to\mathbb{R}^{2}\), \(F(x,y)=(u(x,y),\,v(x,y))\).
Suppose \(F\) is differentiable (in the real sense). We will compute the differential of \(F\) at some point \((x,y)\).
\(DF_{(x,y)}=\begin{pmatrix}\dfrac{\partial u}{\partial x} & \dfrac{\partial u}{\partial y}\\[6pt]\dfrac{\partial v}{\partial x} & \dfrac{\partial v}{\partial y}\end{pmatrix}=\begin{pmatrix}a & c\\b & d\end{pmatrix}\)
\(F(x+h_{1},\,y+h_{2})\approx F(x,y)+DF_{(x,y)} \begin{pmatrix} h_{1} \\ h_{2} \end{pmatrix}=\Big(u(x,y)+u_{x}h_{1}+u_{y}h_{2},\,v(x,y)+v_{x}h_{1}+v_{y}h_{2}\Big )\)
By C–R eq. \(\begin{cases} u_{x}=v_{y} \\ v_{x}=-u_{y} \end{cases}\implies \begin{pmatrix} u_{x} & u_{y} \\ v_{x} & v_{y} \end{pmatrix}= \begin{pmatrix} a & c \\ b & d \end{pmatrix}\Rightarrow a=d, b=-c\)
\(\Rightarrow\begin{pmatrix}a & c\\b & d\end{pmatrix}=\begin{pmatrix}a & -b\\b & a\end{pmatrix}\ \leftarrow\ \text{the matrix given by multiplication by a complex number.}\)
Example
-
\(f(z)=z^2\), what is \(f'(z)\)?
Solution
\(\lim_{h\to 0}\frac{f(z+h)-f(z)}{h},\quad h\in\mathbb{C}\)
For \(f(z)=z^{2}\): \(\frac{f(z+h)-f(z)}{h}=\frac{(z+h)^{2}-z^{2}}{h}=\frac{2zh+h^{2}}{h}=2z+h\)
\(\Rightarrow\ f'(z)=\lim_{h\to 0}(2z+h)=2z,\quad \forall z\in\mathbb{C}.\) -
\(f(z)=\overline{z}\), that is \(f(x+iy)=x-iy\)
Solution
\(u(x,y)=x, v(x,y)=-y\), then \(Df=\begin{pmatrix}1&0\\0&-1\end{pmatrix}\)
By C–R: \(v_{x}=1,\ v_{y}=-1\ \Rightarrow\ v_{x}\neq v_{y}\ \Rightarrow\ \text{NOT diff. in the complex sense.}\)
-
\(f(z)=|z|^{2}=x^{2}+y^{2}\)
Solution
Note that \(v(x,y)\equiv 0\), if there exists derivative in complex sense, then it satisfies C-R equation
In general, if \(f(x,y)=u(x,y)+iv(x,y)\) and \(v(x,y)\equiv 0\ \forall(x,y)\ (\text{Im} f\subset\mathbb{R}\,)\)
Then \(\frac{\partial v}{\partial y}=0=\frac{\partial v}{\partial x}\ \Rightarrow\ \text{by C–R equation}\ \Rightarrow\ Du=0\ \Rightarrow u \text{ is constant}\)
Contradiction
-
Prove: \(f(z)=\frac{1}{z}\) is holomorphic for \(z\neq 0\).
\(\frac{f(z+h)-f(z)}{h}=\frac{\frac{1}{z+h}-\frac{1}{z}}{h}=\frac{z-(z+h)}{(z+h)z\,h} =\frac{-h}{(z+h)z\,h}=-\frac{1}{(z+h)z}\)
Fix \(z\neq 0\). As \(h\to 0\), \(-\frac{1}{(z+h)z}\ \longrightarrow\ -\frac{1}{z^{2}}\)
Thus \(\left(\dfrac{1}{z}\right)'=-\dfrac{1}{z^{2}}\) for \(z\neq 0\)
Definition
\(f\) is called holomorphic at \(z_{0}\iff\exists f'(z_0)\) in the complex sense
\(f\) is called holomorphic in \(\Omega\) if it is holomorphic on \(z,\forall z\in \Omega\)
Remark on complex limits
-
\(\exists f'(z_0)\) and \(g'(z)\implies \exists (f+g)'(z)\)
-
\(\exists f'(z),c\in \mathbb{C}\implies \exists(cf)'=cf'\)
-
\(\exists\lim_{h\to 0}f_{1}(h)=\ell_{1},\exists\lim_{h\to 0}f_{2}(h)=\ell_{2} \ \Rightarrow\exists\lim_{h\to 0}\big(f_{1}(h)f_{2}(h)\big)=\ell_{1}\ell_{2}\)
Idea: \(F(x,y,s,t)=(x s - y t,\ x t + y s)\)
Proof
Let \(f_{1}(h)=x(h)+i\,y(h),\, f_{2}(h)=s(h)+i\,t(h),\,\ell_{1}=a+ib,\ \ell_{2} =c+id.\)
The hypothesis \(\lim_{h\to 0}f_{1}(h)=\ell_{1},\, \lim_{h\to 0}f_{2}(h)=\ell_{2}\) is equivalent (componentwise in \(\mathbb{R}^2\)) to \(x(h)\to a,\ y(h)\to b,\ s(h)\to c,\ t(h)\to d\quad(h\to 0)\)Define \(F:\mathbb{R}^4\to\mathbb{R}^2\) by \(F(x,y,s,t)=(x s- y t,\ x t+ y s)\)
Then \(f_{1}(h)f_{2}(h)=(x s- y t)+i(x t+ y s)\implies(\text{Re},\text{Im})\big(f_{1}( h)f_{2}(h)\big)=F\big(x(h),y(h),s(h),t(h)\big).\)Since the coordinates of \(F\) are polynomials, \(F\) is continuous on \(\mathbb{R}^4\). Hence by the real limit rules (sum/product continuity), \(F\big(x(h),y(h),s(h),t(h)\big)\ \longrightarrow F(a,b,c,d)=(ac-bd,\ ad+bc)\) as \(h\to 0\)
Translating back to \(\mathbb{C}\), \(\lim_{h\to 0} f_1(h)f_2(h)=(ac-bd)+i(ad+bc)=(a+ib)(c+id)=\ell_1\ell_2.\)Therefore, \(\exists\lim_{h\to 0}f_{1}(h)=\ell_{1},\ \exists\lim_{h\to 0}f_{2}(h)=\ell_{2}\ \Rightarrow \exists\lim_{h\to 0}\big(f_{1}(h)f_{2}(h)\big)=\ell_{1}\ell_{2}\quad\text{in }\mathbb{C} .\)
-
\(\exists f'\) and \(g'\implies \exists (f\cdot g)'=f'g+ fg'\)
Example: If \(f(z) = z\), \(f'(z) = 1\), then \(\frac{f(z+h) - f(z)}{h} = \frac{z+h-z}{h} = \frac{h}{h} = 1\)
Then \((z \cdot z)' = z'z + zz' = z+z = 2z\). Induction \(f(z) = z^m \implies (z^m)' = mz^{m-1}\)Proof
\(\frac{f(z+h)g(z+h)-f(z)g(z)}{h}=\frac{f(z+h)g(z+h)-f(z)g(z+h)+f(z)g(z+h)-f(z)g(z)}{h}\) \(=\,f(z+h)\,\frac{g(z+h)-g(z)}{h}\;+\;\frac{f(z+h)-f(z)}{h}\,g(z)\)
\(\begin{cases} f(z+h)\to f(z)\quad(\text{f cont.}) \\ \frac{g(z+h)-g(z)}{h}\to g'(z)\quad(\text{hypothesis}) \\ \frac{f(z+h)-f(z)}{h}\to f'(z) \end{cases}\ \Rightarrow\ (fg)'(z)=f(z)g'(z)+f'(z)g(z)\)
Consequence: Polynomials are holomorphic, and the usual derivation rules hold. \(\left(\sum_{n=0}^{N} a_n z^{n}\right)'=\sum_{n=1}^{N} n\,a_n\,z^{\,n-1}\)
Trigonometric functions
We know \(e^{x+iy}=e^{x}e^{iy}=e^{x}(\cos y+i\sin y)=e^{x}\cos y+ie^{x}\sin y=u+iv\) where \(u=e^{x}\cos y\), \(v=e^{x}\sin y\)
\(f'(z)=\lim_{h\to 0}\frac{f(z+h)-f(z)}{h}\iff\lim_{h\to 0}\frac{\lvert f(z+h)-f(z)-f'(z)h\rvert}{\lvert h\rvert}=0\)
Show that \(f\) is holomorphic at \(z\)\(\iff\)\(f\) is real differentiable and C-R hold
Let's C–R check \(u_{x}=e^{x}\cos y,\ v_{y}=e^{x}\cos y;\ u_{y}=-e^{x}\sin y,\ v_{x}= e^{x}\sin y\)
Hence C–R holds.
Thus \(e^z:=e^x\cos y+ie^x\sin y\) is holomorphic
\((e^{z})'=\lim_{h\to 0}\frac{f(z+h)-f(z)}{h}=\lim_{\Delta x\to 0}\frac{f(z+\Delta x)-f(z)}{\Delta x}=\lim_{\Delta y\to 0}\frac{f(z+i\,\Delta y)-f(z)}{i\,\Delta y}\) \(=u_{x}+iv_{x}= \frac{1}{i}(u_{y} +iv_{y})= v_{y} - iu_{y}\)
Which means \((e^z)'=u_x+iv_x\text{ or }v_y-iu_y\). But don’t worry, they give the same answer by C–R
Let \(e^{x+iy}=e^{x}\cos y+i\,e^{x}\sin y\) with \(u=e^{x}\cos y,v=e^{x}\sin y\).
\(\big(e^{x+iy}\big)'=v_{y}-iu_{y}= e^{x}\cos y - i\big(-e^{x}\sin y\big)= e^{x} \cos y + i\,e^{x}\sin y\)
\(= u_{x}+iv_{x}= e^{x}\cos y + i\,e^{x}\sin y\ \Rightarrow\ (e^{z})'=e^{z}\)
Remark
\(e^{z} = e^{z+2\pi i}\) is not injective.
Hyperbolic functions \(\cosh z=\frac{e^{z}+e^{-z}}{2},\ \sinh z=\frac{e^{z}-e^{-z}}{2}\)
Recall \(e^{ix}=\cos x+i\sin x\) \((x\in\mathbb{R})\).
Hence \(\cos x=\frac{e^{ix}+e^{-ix}}{2},\ \sin x=\frac{e^{ix}-e^{-ix}}{2i}\)
For \(z\in\mathbb{C}\), define \(\cos z=\frac{e^{iz}+e^{-iz}}{2},\ \sin z=\frac{e^{iz}-e^{-iz}}{2i}\)
\(\cos z\) and \(\sin z\) are not bounded.
Example \(\cos(ix)=\frac{e^{iix}+e^{-iix}}{2}=\cosh x\), then \(\cos(iz)=\cosh(z)\)
Identity \(\cos^{2}z+\sin^{2}z =\left(\frac{e^{iz}+e^{-iz}}{2}\right)^{2}+\left(\frac{e^{iz}-e^{-iz}}{2i} \right)^{2}=\frac{e^{2iz}+e^{-2iz}+2}{4}+\frac{e^{2iz}+e^{-2iz}-2}{-4}=1\)
Unity root
We know \(e^{2\pi i}=1\), \(e^{2\pi i/m}\neq 1\) (for \(m>1\)) and \(\big(e^{2\pi i/m}\big)^{m}=1\)
For \(k\in\mathbb{Z}\): \(\big(e^{(2\pi i/m)\,k}\big)^{m}=e^{2\pi i k}=(e^{2\pi i})^{k}=1\)
The \(m\)-th roots of unity: \(\mu_{k}=e^{2\pi i k/m},\ k=0,1,\dots,m-1\) where modulus \(=1\), argument \(=2\pi k/m\)
Example
-
-
\(m=3\) (cube roots)
\(e^{2\pi i/3}=\cos\!\left(\tfrac{2\pi}{3}\right)+i\sin\!\left(\tfrac{2\pi}{3}\right) =-\tfrac{1}{2}+i\,\tfrac{\sqrt{3}}{2}\)
\(z^{3}=1\ \Longleftrightarrow\ z^{3}-1=0=(z-1)(z^{2}+z+1)\)
Solutions:
\(z=1,\quad z=\frac{-1\pm i\sqrt{3}}{2}=e^{\pm 2\pi i/3}\) -
\(m=8\) (8th roots)
Graph of complex function
It's hard to draw a graph of complex function usually because we cannot draw a graph in 4 dimension
But we can draw a graph to describe where a line go to