
Introduction to Systems Programming
Anonymous classes, Functional interfaces, Streams, Lambda

functions

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 0

2025 - Simón Gutiérrez Brida 1

But before… a quick demo from last week
Comparable, Comparable<T>, and Comparable<? super T>

From a simple maximum of Integer, to a maximum of
Anything(an incomplete solution), a maximum of Circle,
and a maximum of Anything (a complete solution).

And finally, how would the profile of an generic
OrderedList would look like, and why.

2023 - Simón Gutiérrez Brida 2

Implementing a sort method

What if we want a different ordering of our elements
(like, sort in reverse order), what can we do?

Let’s use selection sort to keep it simple

2025 - Simón Gutiérrez Brida 3

Anonymous classes

“You cannot have instances of Interfaces or Abstract classes”, this is true.

But you can have an Anonymous class implementing an Interface or Abstract
class.

● What is an Anonymous class?

● Why would you want one?

2025 - Simón Gutiérrez Brida 4

Anonymous classes

“You cannot have instances of Interfaces or Abstract classes”, this is true.

But you can have an Anonymous class implementing an Interface or Abstract
class.

● What is an Anonymous class?
○ It’s a class without a given name.

● Why would you want one?
○ When an abstract class or interface requires few methods and you

don’t want to introduce new classes that will only be used once.

2023 - Simón Gutiérrez Brida 5

Implementing a generic sort method

Now we want to sort elements according to a given
ordering.

Let’s use selection sort to keep it simple

2025 - Simón Gutiérrez Brida 6

Limitations of anonymous classes

● An anonymous class is actually syntactic sugar, a class will be generated,
only that it will not have a “good” name, e.g.: “Main$1”.

● Since a new class is being created, then you are not really creating an
instance of an interface or abstract class.

● If used wrongly, can make your code unreadable.

2025 - Simón Gutiérrez Brida 7

Functional Interfaces
● It’s an annotation (@FunctionalInterface) for an interface.

● It can only be used for interfaces with only one abstract method (*).

● It allows instances of an interfaces to be created with:
○ Lambda expressions.

■ (String s) -> {return s;} could be used for any FunctionalInterface with
an abstract method that takes a String and returns a String.

○ Method references.
■ Integer::valueOf (a method reference) could be used for any

FunctionalInterface that takes a String and returns an Integer.

○ Constructor references.
■ String::new (a constructor reference) could be used for any Functional

Interface that takes a String and returns a String.

2025 - Simón Gutiérrez Brida 8

Collections from Collections

A A
map(aToA)

A
filter(pred)

B
map(aToB)

Boolean
map(predB)

2025 - Simón Gutiérrez Brida 9

Why Streams if we can use Collections?

● To go from one Collection to another, we need to go over all elements in the
source collection.

● Even though the functions/predicates/actions applied to elements on a
collection might only depend on the current element, they are applied
sequentially.

● Streams work in a Producer-Consumer fashion, the resulting stream can be
used while not all elements in the source streams are consumed.

● Streams allow for parallel application of functions/predicates/actions.
○ Although it will not always be faster (there is an overhead for

parallelism)

2025 - Simón Gutiérrez Brida 10

Why Streams if we can use Collections?

● Must be careful with streams when the order of evaluation/generation is
important (specifically if you will use a parallel stream).

● Overuse can make your code become unreadable.

● In Java one needs to remember several Classes/Methods names,
languages like Haskell (which is fully functional) are much better suited to
work with streams of data.

2025 - Simón Gutiérrez Brida 11

Lambdas

● Lambdas allows for anonymous functions.

● Very useful when those functions are short.

● The format is: (list-arguments) -> {body}
○ Where list-arguments can be empty, can only contain symbol names, or

can be of the form Type name.

○ If the function is meant to return then the body must end with a return
statement.

● Overuse can make your code be unreadable.

