
Introduction to Systems Programming
Interfaces

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 0

2025 - Simón Gutiérrez Brida 1

Revisiting types

A type defines a set of values, an what operations can
be applied to those values.

The type itself doesn’t define the operations, it defines
which operations can be applied to values of its type.

Examples: natural numbers, integer numbers, real
numbers, complex numbers, etc.

2025 - Simón Gutiérrez Brida 2

Revisiting types

A type in OOP defines a set of values, and also the
operations that can be applied to those values.

The type defines both the values, and their
representation, and the operations, and their
implementations.

Examples: LinkedList, ArrayList, etc.

2025 - Simón Gutiérrez Brida 3

Revisiting types

An Abstract Data Type is a description of values and
operations on those values, without defining the
technical details on how those values are represented
and how the operations work on those representations

- Me

2023 - Simón Gutiérrez Brida 4

Abstract Data Types

A List is a linearly organized collection of values, its
main operations are:

● Creation
● Insertion/Deletion/Retrieval
● Properties about a list: empty, size, contains.

Lists

2023 - Simón Gutiérrez Brida 5

Abstract Data Types

A Set is an unordered collection of different elements, its
main operations are:

● Creation
● Insertion/Deletion
● Union/Intersection
● Properties about a list: empty, size, contains, is a

sub set.

Sets

2023 - Simón Gutiérrez Brida 6

Abstract Data Types
Stacks

A Stack is a linearly organized collection of values
(similar to a list), it’s a FILO collection (First In, Last
Out), its main operations are:

● Creation
● Push/Pop
● Properties about a list: empty, size

2023 - Simón Gutiérrez Brida 7

Abstract Data Types
Queues

A Queue is a linearly organized collection of values
(similar to a list), it’s a FIFO collection (First In, First
Out), its main operations are:

● Creation
● Enqueue/Dequeue
● Properties about a list: empty, size

2023 - Simón Gutiérrez Brida 8

Data Abstractions in Object Oriented Languages

Class

● Defines a new type
● Operations (both declarations and definitions)

○ Create/Destroy Class values
○ Modify Class values
○ Check properties in Class values

2023 - Simón Gutiérrez Brida 9

Data Abstractions in Object Oriented Languages

Class

● Defines a new type
● Operations (both declarations and definitions)

○ Create/Destroy Class values
○ Modify Class values
○ Check properties in Class values

These are called, objects, they are instances of a class.

2023 - Simón Gutiérrez Brida 10

Data Abstractions in Object Oriented Languages

Class

● Defines a new type
● Operations (both declarations and definitions)

○ Create/Destroy Class values
○ Modify Class values
○ Check properties in Class values

These are called, objects, they are instances of a class.

Follow formal conventions, usually ClassName(arguments)

Data and operations are not separated, each object
encapsulates both data and operations.

2023 - Simón Gutiérrez Brida 11

Data Abstractions in Object Oriented Languages

Class

● Defines a new type
● Operations (both declarations and definitions)

○ Create/Destroy Class values
○ Modify Class values
○ Check properties in Class values

These are called, objects, they are instances of a class.

Follow formal conventions, usually ClassName(arguments)

Data and operations are not separated, each object
encapsulates both data and operations.

Usually
memory
management
is automatic,
we don’t need
to destroy
values.

2023 - Simón Gutiérrez Brida 12

Data Abstractions in Object Oriented Languages

Abstract Class or
Interfaces

● Defines an abstract new type
● Operations (both declarations and definitions)

○ Create/Destroy Class values
○ Modify Class values
○ Check properties in Class values

ImplementationA ImplementationN. . .

2023 - Simón Gutiérrez Brida 13

Abstract Data Types in OOP

List

LinkedList ArrayList
is ais a

2023 - Simón Gutiérrez Brida 14

Abstract Data Types in OOP

List

LinkedList
is a

Node

has as head

2023 - Simón Gutiérrez Brida 15

An interface and an implementation are both types

List

LinkedList ArrayList
is ais a

is not

2023 - Simón Gutiérrez Brida 16

Interfaces as Types

An interface in Java allows to define a new Type, while
only providing a description but without providing a
specific representation; and the operations applied to
values of that Type, without providing any details on
implementation.

● Implementing classes are subtypes of the interface
type.

● So, polymorphism is available with interfaces as
well as classes.

2023 - Simón Gutiérrez Brida 17

Interfaces as Specifications

● Strong separation of functionality from
implementation.
○ Though parameter and return types are

mandated.

● Clients interact independently of the
implementation.
○ But clients can choose from alternative

implementations.

2023 - Simón Gutiérrez Brida 18

Interfaces in Java

An interface in Java allows to define a new Type, while
only providing a description but without providing a
specific representation; and the operations applied to
values of that Type, without providing any details on
implementation.

● An interface cannot have instances.
● An interface cannot define/declare constructors.
● An interface cannot define/declare fields (*).
● An interface cannot define methods (*).
● An interface can declare public methods (*).

(*) Several things have changed since Java 9, I recommend staying away
from new features until the basic ones are fully understood.

2023 - Simón Gutiérrez Brida 19

Seeing a class through an Interface (1)

The interface of the class

2023 - Simón Gutiérrez Brida 20

Seeing a class through an Interface (2)

The interface of the class

● Class E
● Implements: A, B, C, D
● Constructors
● MethodE1
● MethodE2
● MethodE3
● MethodA1
● MethodA2
● MethodA3
● MethodB1
● MethodC1
● MethodC2
● MethodD1
● MethodD2
● MethodD3
● MethodD4

As E

● Class E
● Implements: A, B, C, D
● Constructors
● MethodE1
● MethodE2
● MethodE3
● MethodA1
● MethodA2
● MethodA3
● MethodB1
● MethodC1
● MethodC2
● MethodD1
● MethodD2
● MethodD3
● MethodD4

2023 - Simón Gutiérrez Brida 21

Seeing a class through an Interface (3)

The interface of the class

● Class E
● Implements: A, B, C, D
● Constructors
● MethodE1
● MethodE2
● MethodE3
● MethodA1
● MethodA2
● MethodA3
● MethodB1
● MethodC1
● MethodC2
● MethodD1
● MethodD2
● MethodD3
● MethodD4

● Class E
● MethodA1
● MethodA2
● MethodA3

As A

2023 - Simón Gutiérrez Brida 22

Seeing a class through an Interface (4)

The interface of the class

● Class E
● Implements: A, B, C, D
● Constructors
● MethodE1
● MethodE2
● MethodE3
● MethodA1
● MethodA2
● MethodA3
● MethodB1
● MethodC1
● MethodC2
● MethodD1
● MethodD2
● MethodD3
● MethodD4

● Class E
● MethodB1

As B

2023 - Simón Gutiérrez Brida 23

Seeing a class through an Interface (5)

The interface of the class

● Class E
● Implements: A, B, C, D
● Constructors
● MethodE1
● MethodE2
● MethodE3
● MethodA1
● MethodA2
● MethodA3
● MethodB1
● MethodC1
● MethodC2
● MethodD1
● MethodD2
● MethodD3
● MethodD4

● Class E
● MethodC1
● MethodC2

As C

2023 - Simón Gutiérrez Brida 24

Seeing a class through an Interface (6)

The interface of the class

● Class E
● Implements: A, B, C, D
● Constructors
● MethodE1
● MethodE2
● MethodE3
● MethodA1
● MethodA2
● MethodA3
● MethodB1
● MethodC1
● MethodC2
● MethodD1
● MethodD2
● MethodD3
● MethodD4

● Class E
● MethodD1
● MethodD2
● MethodD3
● MethodD4

As D

2025 - Simón Gutiérrez Brida 25

Demo

It is possible for one class to implement
several interfaces. We will start by looking at
Java’s own LinkedList, and several interfaces
implemented by it.

Looking at LinkedList with different interfaces

2023 - Simón Gutiérrez Brida 26

Demo

The implementation of an ADT might not be different
than the implementation of another. A LinkedList can
be used to implement Lists, Sets, Collections (*),
Queues, Stacks, Deques, etc.

Making our own ADT and implementation

* Consider methods map, all, and any.

Introduction to Systems Programming
Function overloading

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 27

2023 - Simón Gutiérrez Brida 28

Several function names with different arguments

In a lot of cases, we have the same function/operation
for different inputs (quantity or types).

For example, a max function: max(a, b) will return a if a
is greater than b, according to some criteria.

Let’s explore some of these cases…

2023 - Simón Gutiérrez Brida 29

Several function names with different arguments

● max(char, char), what should this do?
● max(int, int), what should this do?
● max(String, String), what should this do?
● max(Student, Student), what should this do?
● Could we abstract all of these using interfaces and

generics?

2023 - Simón Gutiérrez Brida 30

We have seen things like this before

1 + 3
"Hello" + " World!"
35 + " seconds"
3.5f + 4

This is an example of an operator
overloading. But we could write this
as a function/method.

2023 - Simón Gutiérrez Brida 31

We have seen things like this before

1 + 3
"Hello" + " World!"
35 + " seconds"
3.5f + 4

public Object add(int a, int b) {
 return new Integer(a + b);
}

public Object add(String a, String b) {
 return a.concact(b);
}

public Object add(int a, String b) {
 return String.valueOf(a).concact(b);
}

public Object add(float a, int b) {
 return new Float(a + ((float) b));
}

2023 - Simón Gutiérrez Brida 32

We have seen things like this before

1 + 3
"Hello" + " World!"
35 + " seconds"
3.5f + 4

public Object add(int a, int b) {
 return new Integer(a + b);
}

public Object add(String a, String b) {
 return a.concact(b);
}

public Object add(int a, String b) {
 return String.valueOf(a).concact(b);
}

public Object add(float a, int b) {
 return new Float(a + ((float) b));
}

This is in fact a very artificial example, we are
abusing returning Object to be able to return
anything as an Object.

2023 - Simón Gutiérrez Brida 33

Demo
Making a demo for the previous add example

● max(char, char), what should this do?
● max(int, int), what should this do?
● max(String, String), what should this do?
● max(Student, Student), what should this do?
● Could we abstract all of these using interfaces and

generics?

