
Introduction to Systems Programming
Well-behaved objects. Software Testing

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 0

2025 - Simón Gutiérrez Brida 1

A simple code snippet

2025 - Simón Gutiérrez Brida 2

Possible outputs

2025 - Simón Gutiérrez Brida 3

Possible outputs

2025 - Simón Gutiérrez Brida 4

A simple code snippet

2025 - Simón Gutiérrez Brida 5

We have to deal with errors

● Early (simpler) errors are usually syntax errors.
○ The compiler will spot these.

● Later (more complex) errors are usually logical errors.
○ The compiler usually cannot help with these.

○ Also known as logical bugs.

○ Some logical errors have no immediately obvious
manifestation.

○ Commercial software is rarely error free.

2025 - Simón Gutiérrez Brida 6

Prevention vs Detection

● We can reduce the likelihood of errors.
○ Use software engineering techniques, like encapsulation.
○ Pay attention to cohesion and coupling.

● We can improve the chances of detection.
○ Use software engineering practices, like modularization and

good documentation.

● We can develop detection skills (gain experience).

Developer vs Maintainer

2025 - Simón Gutiérrez Brida 7

Testing and Debugging

● These are crucial skills.

● Testing searches for the presence of errors.

● Debugging searches for the source of errors.
○ The manifestation of an error may well occur in a ‘distant’

location from its source.

2025 - Simón Gutiérrez Brida 8

Detecting a bug with tests (the RIPR model)

● Reachability : Tests cause faulty statements to be reached

● Infection : Tests cause faulty statement to result in an incorrect
state.

● Propagation : The incorrect state propagates to incorrect
output.

● Revealability : The oracles must observe part of the incorrect
output.

2025 - Simón Gutiérrez Brida 9

Unit Testing

● Unit testing: test the behavior of a unit of software as
independently of its context as possible.

● Each unit of an application may be tested.
○ Method, class, module (package in Java).

● Can (should) be done during development.
○ Finding and fixing bugs as early as possible reduces

development costs (e.g., development/programming time).

2025 - Simón Gutiérrez Brida 10

Testing fundamentals

● Understand what the unit should do – its contract.
○ You will be looking for violations.

○ Use positive tests and negative tests.

● Test objectives
○ Try to thoroughly cover the unit, e.g.: cover as many

statements as possible, as many branches as possible, etc

● Test boundaries in the behavior, e.g.: search an empty
collection, add to a full collection, etc.

2025 - Simón Gutiérrez Brida 11

Testing fundamentals

● Understand what the unit should do – its contract.
○ You will be looking for violations.

○ Use positive tests and negative tests.

Positive tests: Test correct behaviour on valid scenarios.
Negative tests: Test correct behaviour on invalid scenarios.

2025 - Simón Gutiérrez Brida 12

Components of a Unit Test

● Arrange: preparation of the scenario.
○ State and inputs/arguments necessary for testing the unit.

● Act: this is the execution of the unit being tested.
○ It typically just involves calling the software under test in the prepared

scenario.

● Assert: captures the expectations on the execution of the test, i.e., the
expected behavior (if the software were correct).
○ It requires understanding precisely what the software is supposed to

do in the given context for the given data.

○ Checks expected behaviour against actual behaviour, e.g.: asserts the
output is the output that was expected.

2025 - Simón Gutiérrez Brida 13

Example (ad hoc unit testing)

2025 - Simón Gutiérrez Brida 14

Drawbacks of ad hoc testing

● Inconvenient for repeated testing.
○ It does not store tests for future runs.

● Cumbersome and error-prone as the setting of the environment becomes
more complex.
○ Too many actions or method calls to set the environment in a testing

condition.

● It requires human intervention to attest if test “passes”.
○ Developer has to examine software outputs to assess if software

behaves as expected

2025 - Simón Gutiérrez Brida 15

Example using testing framework (JUnit)

2025 - Simón Gutiérrez Brida 16

Tests automation

● Good testing is a creative process, but thorough testing is time consuming
and repetitive.

● Regression testing involves re-running tests.

● Use of a test rig or test harness can relieve some of the burden.

2025 - Simón Gutiérrez Brida 17

JUnit

● JUnit is a Java test framework.

● Test cases are methods that contain tests.

● Test classes contain test methods.

● Assertions are used to assert expected method results.

● Fixtures are used to support multiple tests (allows to define the same
scenarios for several tests).

2025 - Simón Gutiérrez Brida 18

Modularization and interfaces

● Applications often consist of different modules.
○ E.g.: to separate classes into logical modules (packages).

● The interface between modules must be clearly specified.
○ Provides a level of abstraction and modularization that increases

software quality.

○ Supports independent concurrent development.

○ Increases the likelihood of successful integration.

2025 - Simón Gutiérrez Brida 19

Modularization in a calculator

● Each module does not need to know implementation details of the other.
○ User controls could be a GUI or a hardware device.
○ Logic could be hardware or software.

2025 - Simón Gutiérrez Brida 20

Method headers as an interface

2025 - Simón Gutiérrez Brida 21

Debugging - revisited

● It is important to develop code reading skills.
○ Debugging will often be performed on others’ code.

● Techniques and tools exist to support the debugging process.

● Explore through the calculator-engine project.

2025 - Simón Gutiérrez Brida 22

Manual Walkthroughs

● Relatively underused.
○ A low-tech approach.
○ More powerful than appreciated.

● Get away from the computer!

● ‘Run’ a program by hand.

● High-level (Step) or low-level (Step into) views.

2025 - Simón Gutiérrez Brida 23

Tabulating object state

● An object’s behavior is largely determined by its state.

● Incorrect behavior is often the result of incorrect state.

● Tabulate the values of key fields.

● Document state changes after each method call.

2025 - Simón Gutiérrez Brida 24

Verbal walkthroughs

● Explain to someone else what the code is doing.
○ They might spot the error.
○ The process of explaining might help you to spot it for yourself.

● Group-based processes exist for conducting formal walkthroughs or
inspections.

2025 - Simón Gutiérrez Brida 25

Print statements

● The most popular technique.

● No special tools required.

● All programming languages support them.

● Only effective if the right methods are documented.

● Output may be voluminous!

● Turning off and on is labor intensive and error prone.

2025 - Simón Gutiérrez Brida 26

Demo

Let’s make a code review
of the

“Online-shop-junit”
project.

