Introduction to Systems Programming

Well-behaved objects. Software Testing

2025 - Simén Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre)

A simple code snippet

public void test()

{

int sum = 1;

for (int 1 = 0; i <= 4; i++);

{

sum = sum + 1;

}

System.out.println ("The result is: " + sum);

System.out.println ("Double result: " + sumt+sum);
}

2025 - Simén Gutiérrez Brida

The
The
The
The

Double
Double
Double
Double

result
result
result

result

1.8
1.5
1.8 2

18

result:
result:
rasilt:

result:

1.2
4

272
06

2025 - Simén Gutiérrez Brida

Possible outputs

The
The
The
The

result
result
result

result

1.8
1.5
1.8 2

18

Double
Double
Double
Double

result:
result:
rasilt:

result:

1.2
4

272
06

2025 - Simén Gutiérrez Brida

Possible outputs

Theresultis: 2
Double result; 22

A simple code snippet

public void test()

{

int sum = 1;

for (int i = 0; i <= 4; i++@
{

sum = sum + 1;

}

System.out.println("The result is: " sum).;
System.out.println ("Double result: ' m) ;

2025 - Simén Gutiérrez Brida

We have to deal with errors

e Early(simpler) errors are usually syntax errors.
o The compiler will spot these.

e Later (more complex) errors are usually logical errors.
o The compiler usually cannot help with these.

o Also known as logical bugs.

o Some logical errors have no immediately obvious
manifestation.

o Commercial software is rarely error free.

2025 - Simén Gutiérrez Brida

Prevention vs Detection

e We can reduce the likelihood of errors.
o Use software engineering techniques, like encapsulation.
o Pay attention to cohesion and coupling.

e We can improve the chances of detection.
o Use software engineering practices, like modularization and
good documentation.

e We can develop detection skills (Qain experience).

2025 - Simén Gutiérrez Brida

Testing and Debugging

e These are crucial skills.
e Testing searches for the presence of errors.
e Debugging searches for the source of errors.

o The manifestation of an error may well occur in a ‘distant’
location from its source.

2025 - Simén Gutiérrez Brida

Detecting a bug with tests (the RIPR model)

e Reachability: Tests cause faulty statements to be reached

e Infection: Tests cause faulty statement to result in an incorrect
state.

e Propagation: The incorrect state propagates to incorrect
output.

e Revealability: The oracles must observe part of the incorrect
output.

2025 - Simén Gutiérrez Brida

Unit Testing

e Unit testing: test the behavior of a unit of software as
independently of its context as possible.

e Each unit of an application may be tested.
o Method, class, module (package in Java).

e Can (should) be done during development.

o Finding and fixing bugs as early as possible reduces
development costs (e.g., development/programming time).

2025 - Simén Gutiérrez Brida

Testing fundamentals

e Understand what the unit should do -its contract.
o You will be looking for violations.

o Use positive tests and negative tests.

e TJest objectives
o Tryto thoroughly cover the unit, e.g.: cover as many
statements as possible, as many branches as possible, etc

e Test boundariesin the behavior, e.g.: search an empty
collection, add to a full collection, etc.

2025 - Simén Gutiérrez Brida

10

Testing fundamentals

e Understand what the unit should do -its contract.
o You will be looking for violations.

o Use positive tests and negative tests.

Positive tests: Test correct behaviour on valid scenarios.

Negative tests: Test correct behaviour on invalid scenarios.

2025 - Simén Gutiérrez Brida

11

Components of a Unit Test

Arrange: preparation of the scenario.
o State and inputs/arguments necessary for testing the unit.

Act: this is the execution of the unit being tested.
o It typically just involves calling the software under test in the prepared
scenario.

Assert: captures the expectations on the execution of the test, i.e,, the
expected behavior (if the software were correct).
o It requires understanding precisely what the software is supposed to
do in the given context for the given data.

o Checks expected behaviour against actual behaviour, e.g.: asserts the
output is the output that was expected.

2025 - Simon Gutiérrez Brida 12

Example (ad hoc unit testing)

2025 - Simén Gutiérrez Brida

Arrange s — L M

13

Drawbacks of ad hoc testing

Inconvenient for repeated testing.
o It does not store tests for future runs.

Cumbersome and error-prone as the setting of the environment becomes
more complex.
o Too many actions or method calls to set the environment in a testing
condition.

It requires human intervention to attest if test “passes”.

o Developer has to examine software outputs to assess if software
behaves as expected

2025 - Simon Gutiérrez Brida 14

Example using testing framework (JUnit)

VEXS
* Tests that blocking an unblocked cell in an ongoing game
* blocks the cell and does not terminate the game
*/

@Test

public void blockingCellOnClosedCellTest()

{
GTSweeperGameState game = new GTSweeperGameState();
int row = 5; Arrange
int col = 4;

@ame.block(row, 6ol);)
assertTrue(game.isBlocked(row, col));
< assertFalse(game.gameEnded()) ; Assert
}

T — EE—

2025 - Simén Gutiérrez Brida

15

Tests automation

Good testing is a creative process, but thorough testing is time consuming
and repetitive.

Regression testing involves re-running tests.

Use of a test rig or test harness can relieve some of the burden.

2025 - Simon Gutiérrez Brida 16

JUnit

JUnit is a Java test framework.

Test cases are methods that contain tests.

Test classes contain test methods.

Assertions are used to assert expected method results.

Fixtures are used to support multiple tests (allows to define the same
scenarios for several tests).

2025 - Simén Gutiérrez Brida

17

Modularization and interfaces

Applications often consist of different modules.
o E.qg. to separate classes into logical modules (packages).

The interface between modules must be clearly specified.
o Provides a level of abstraction and modularization that increases
software quality.

o Supports independent concurrent development.

o Increases the likelihood of successful integration.

2025 - Simén Gutiérrez Brida

18

Modularization in a calculator

User Controls

Each module does not need to know implementation details of the other.

>\ <{—

Arithmetic Logic

o User controls could be a GUI or a hardware device.
o Logic could be hardware or software.

2025 - Simén Gutiérrez Brida

19

Method headers as an interface

// Return the value to be displayed.
public int getDisplayValue();

® 00
// Call when a digit button is pressed.
public void numberPressed (int number) ;
s \ 8
// Plus operator is pressed. 4 [s
public void plus(); — -
0 \ +

// Minus operator is pressed.
public void minus() ;

// Call to complete a calculation.
public void equals();

// Call to reset the calculator.
public void clear();

— P

2025 - Simén Gutiérrez Brida

20

Debugging - revisited

e Itisimportant to develop code reading skills.
o Debugging will often be performed on others’ code.

e Techniques and tools exist to support the debugging process.

e Explore through the calculator-engine project.

2025 - Simén Gutiérrez Brida

21

Manual Walkthroughs

e Relatively underused.

o A low-tech approach.

o More powerful than appreciated.
e Get away from the computer!

e ‘Run’a program by hand.

e High-level (Step) or low-level (Step into) views.

2025 - Simén Gutiérrez Brida

22

Tabulating object state

e An object’s behavior is largely determined by its state.
e Incorrect behavior is often the result of incorrect state.
e Tabulate the values of key fields.

e Document state changes after each method call.

2025 - Simén Gutiérrez Brida

23

Verbal walkthroughs

Explain to someone else what the code is doing.
o They might spot the error.
o The process of explaining might help you to spot it for yourself.

Group-based processes exist for conducting formal walkthroughs or
inspections.

2025 - Simén Gutiérrez Brida

24

Print statements

e The most popular technique.

e No special tools required.

e All progromming languages support them.

e Only effective if the right methods are documented.
e Output may be voluminous!

e TJurning off and on is labor intensive and error prone.

2025 - Simén Gutiérrez Brida

25

2025 - Simén Gutiérrez Brida

Demo

Let's make a code review
of the
“Online-shop-junit”
project.

26

