
Introduction to Systems Programming
Code Review

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 0

Introduction to Systems Programming
Reviewing the structure of a class

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 1

2025 - Simón Gutiérrez Brida 2

Reviewing the structure of a class
We compile/run

while being in this
folder

The src/main/java folder is the usual convention for
a Java project, it’s one of many standard folders.

2025 - Simón Gutiérrez Brida 3

Reviewing the structure of a class
We compile/run

while being in this
folder

The src/main/java folder is the usual convention for
a Java project, it’s one of many standard folders.

import in Java does not perform
code insertion as in, for example,

C.

2025 - Simón Gutiérrez Brida 4

Reviewing the structure of a class

The interface of the class

2025 - Simón Gutiérrez Brida 5

Visibility, class fields/methods, constants.

Visibility/Class From class A
(package pA)

From class A2
(package pA)

From class B2
(package pB,
subclass of A)

From class B1
(package pB)

private ACCESSIBLE INACCESSIBLE INACCESSIBLE INACCESSIBLE

package ACCESSIBLE ACCESSIBLE INACCESSIBLE INACCESSIBLE

protected ACCESSIBLE ACCESSIBLE ACCESSIBLE INACCESSIBLE

public ACCESSIBLE ACCESSIBLE ACCESSIBLE ACCESSIBLE

Accessibility of members declared by class A from different classes.

2025 - Simón Gutiérrez Brida 6

Visibility, class fields/methods, constants.

Sometimes, we need members (fields or methods) that should not require
an object to be used. For example, if we want to count how many objects

of a class have been created; a math function that doesn’t require a
state, e.g.: fibonacci; sorting functions. In some cases we want a class to
have at most one object (see Singleton pattern), constructors must be

private and we must use a class method to the the one instance allowed.

To declare a class member we use the keyword static

2025 - Simón Gutiérrez Brida 7

Class members

Let’s see a Singleton
class and an object

counter.

2025 - Simón Gutiérrez Brida 8

Visibility, class fields/methods, constants.

Sometimes, we need fields, and/or variables, to behave as constants. A
constant MUST be initialized and one cannot change its value. We use

the final keyword for this.

Introduction to Systems Programming
Parameterized classes (Generic classes)

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 9

2025 - Simón Gutiérrez Brida 10

Generic/Parameterized Classes

Sometimes, a class may have fields that may not have a specific type. We
have seen this with ArrayList, where we have “ArrayList of T”, e.g.:

ArrayList<String> as an “ArrayList of String”; ArrayList<Student> as an
“ArrayList of Student”.

So far we have used parameterized classes, let’s see how to make them.

2025 - Simón Gutiérrez Brida 11

Generic/Parameterized Classes - Motivational example

We want to have a Book Library where we can search for a Book by a title,
but that book may not exist.

2025 - Simón Gutiérrez Brida 12

Generic/Parameterized Classes - Motivational example

We want to have a Book Library where we can search for a Book by a title,
but that book may not exist.

What should we
return?

2025 - Simón Gutiérrez Brida 13

Generic/Parameterized Classes - Motivational example

We could make a class that represents an optional value, i.e.: “Maybe a
value”. But making a class like this only for Book would not be reusable.

What should we
return?

2025 - Simón Gutiérrez Brida 14

Generic/Parameterized Classes - a Maybe class

Let’s make a “Maybe a
value” class.

Introduction to Systems Programming
Designing classes

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 15

2025 - Simón Gutiérrez Brida 16

Software need to change

Software is not a constant product, it evolves, it is modified. The phrase
“change or die” is a very pertinent invariant in software development.

● A software that is continuously maintained will prevail in time.
● A software that is static will become obsolete and die.

From this we can infer that a software that is hard to maintain will be
thrown away.

There are ways to increase the maintainability of our software.

2025 - Simón Gutiérrez Brida 17

Code quality

● Self documented code, i.e.: the code is easy to understand and follow.
● Proper documentation.
● Testability, i.e.: is easy to test the code.
● Low coupling.
● High cohesion.
● Others …

2025 - Simón Gutiérrez Brida 18

Code quality

● Self documented code, i.e.: the code is easy to understand and follow.
● Proper documentation.
● Testability, i.e.: is easy to test the code.
● Low coupling.
● High cohesion.
● Others …

2025 - Simón Gutiérrez Brida 19

Coupling and Cohesion

● Coupling refers to links between separate units
of a program.

● If two classes depend closely on many details of
each other, we say they are tightly coupled.

● We aim for loose coupling.

2025 - Simón Gutiérrez Brida 20

Coupling and Cohesion

Loose coupling makes it possible to:

● Understand one class without reading others.

● Change one class without affecting others.

● Thus: improves maintainability.

2025 - Simón Gutiérrez Brida 21

Coupling and Cohesion

● Cohesion refers to the the number and diversity
of tasks that a single unit is responsible for.

● If each unit is responsible for one single logical
task, we say it has high cohesion.

● Cohesion applies to classes and methods.

● We aim for high cohesion.

2025 - Simón Gutiérrez Brida 22

Coupling and Cohesion

High cohesion makes it easier to:

● Understand what a class or method does.

● Use descriptive names

● Reuse classes or methods.

2025 - Simón Gutiérrez Brida 23

Coupling and Cohesion

● A method should be responsible for one and
only one well defined task.

● Classes should represent one single, well
defined entity.

2025 - Simón Gutiérrez Brida 24

Code duplication

Code duplication:

● Is an indicator of bad design.

● Makes maintenance harder.

● Can lead to introduction of errors during
maintenance.

2025 - Simón Gutiérrez Brida 25

Responsibility-driven design (RDD)

● It focuses on the contracts between client (*) and
provider (**).

● Each class should be responsible for
manipulating its own data.

● RDD leads to low coupling.

(*) The one using the features (provided by a class).
(**) The one offering the features (the class).

2025 - Simón Gutiérrez Brida 26

Localizing change

● One aim of reducing coupling and
responsibility-driven design is to localize
change.

● When a change is needed, as few classes as
possible should be affected *.

(*) This is a general rule, not only applied to RDD.

2025 - Simón Gutiérrez Brida 27

Thinking ahead

● When designing a class, we try to think what
changes are likely to be made in the future.

● We aim to make those changes easy.

But remember: do not overengineer your solutions.

2025 - Simón Gutiérrez Brida 28

Refactoring

● When classes are maintained, often code is
added.

● Classes and methods tend to become longer.

● Every now and then, classes and methods
should be refactored to maintain cohesion and
low coupling.

2025 - Simón Gutiérrez Brida 29

Refactoring and testing

● When refactoring code, separate the
refactoring from making other changes.

● First do the refactoring only, without changing
the functionality.

● Test before and after refactoring to ensure that
nothing was broken (Regression testing is the usual way to
validate this).

2025 - Simón Gutiérrez Brida 30

Design guidelines

● A method is too long if it does more than one
logical task.

● A class is too complex if it represents more than
one logical entity.

Note: these are guidelines - they still leave much open to the designer.

