
Introduction to Systems Programming
Leaving BlueJ

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 0

For this lecture, I suggest reading from the book “Program Development in Java”.

2025 - Simón Gutiérrez Brida 1

Java without BlueJ (nor any IDE)

Being dependant on IDEs to write/compile/and execute code is far from
ideal. Even though IDEs represent a very useful tool for a developer, one

must be able to write/compile/execute code without one.

Let’s start by writing our first code without any IDE.

2025 - Simón Gutiérrez Brida 2

The main method

Any Java Program will start from a method with this signature:

public static void main(String[] args)

Let’s analyze this signature:

● It is public, so anyone can access it.
● It has void as the return type, so it doesn’t return anything.
● Is has an array of String as an argument.
● It uses the static keyword, it means that with method is a “Class

Method”, is not applied/invoked on any object. When applied to a
field, it will mean a “Class Field”, every object will share the same
instance of that field.

● The args argument will hold all command-line arguments as strings.

2025 - Simón Gutiérrez Brida 3

Packages

Packages allows us to modularize our codebase into logical groups of
classes. From the perspective of an OS, a package is just a path
representing a folder with java files inside. From the perspective of Java,
packages are a sequence of names divided by a dot (‘.’).

Example:

2025 - Simón Gutiérrez Brida 4

Compilation and Execution

Even though Java is interpreted, it is interpreted by a Java Virtual
Machine (JVM) which doesn’t take Java code (.java files) as input, but
Java bytecode (.class files).

A compilation process is therefore needed to compile Java source code,
into Java Bytecode.

A compiled Java Code will not be executable as is, it is the JVM which
executes is (interprets it).

For these two tasks we will use the Java Compiler (javac) and the java
command to launch a JVM (java) with our class file (this class file must be
the one that defined the “main” method we saw earlier.

2025 - Simón Gutiérrez Brida 5

Demo

Let’s practice with what
we saw so far.

Introduction to Systems Programming
Postconditions and Class Invariants

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 6

For this lecture, I suggest reading from the book “Program Development in Java”.

2025 - Simón Gutiérrez Brida 7

Having full contracts

For the moment we have used documentation and preconditions to
provide an abstraction of a method or class. With these two tools we are
able to give a readable explanation of what a specific class is and what
each method does without the client of the class needing to understand
how everything is implemented.

Preconditions acted as a contract that only saved the developer for bad
usage of a method/constructor by the client of that class.

The client still don’t have any “guarantees” for when the client satisfies
the preconditions but the operation does not work.

2025 - Simón Gutiérrez Brida 8

Preconditions and Postconditions

Operation
(Method/Constructor)Preconditions

The client must satisfy these.

2025 - Simón Gutiérrez Brida 9

Preconditions and Postconditions

Operation
(Method/Constructor)

Preconditions
The client must
satisfy these.

Postconditions

The developer must
guarantee that these
will be satisfied if the
preconditions are.

If preconditions are satisfied,
the operation must satisfy the
postconditions when finished.

2025 - Simón Gutiérrez Brida 10

Class Invariants

Method

Class Invariant

Class Invariant

Class invariants specify all
correct states for an object of
a particular class.

A class invariant filters what
states are valid
representations for objects of
a particular class.Constructor

Class Invariant

2025 - Simón Gutiérrez Brida 11

Class Invariants, an example

All possible student states.

(this includes students with null in
their name for example)

2025 - Simón Gutiérrez Brida 12

Class Invariants, an example

Class Invariant:
● Name and surname must not be

null, contain only blanks, start or
end with blanks, contain any
character that is not a letter.

● Age must be strictly greater than
zero (that will depend on the
country).

● Id must be a valid id format, it will
depend on the software
requirements.

2025 - Simón Gutiérrez Brida 13

Class Invariants, an example

All possible student states.

(this includes students with null in
their name for example)

All valid student
states.

2025 - Simón Gutiérrez Brida 14

Checking Class Invariant

Is usual, and recommended, to return
false as soon as possible.

2025 - Simón Gutiérrez Brida 15

Demo

Let’s write an Invariant
for Clock and

BoundedCounter.

Introduction to Systems Programming
Intro to exceptions

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 16

For this lecture, I suggest reading from the book “Program Development in Java”.

2025 - Simón Gutiérrez Brida 17

Exceptions
Java uses exceptions to manage erroneous behaviour. Any runtime error
in Java will throw an exception. There are checked and unchecked
exceptions. Checked exceptions require to be declared in a
methods/constructor profile, and require the developer to write code to
catch them.

Even if one doesn’t write code to throw an exception in Java, exceptions
can still be thrown, e.g.: dividing by zero (ArithmeticException); using the
dot operator on a null value (NullPointerException); using an
unsupported operation (UnsupportedOperationException), this
exception is often used as the default code for any operation than needs
to be implemented; invalid arguments for an operation
(IllegalArgumentException); invalid object state for an operation
(IllegalStateException).

One can create a new exception, although we will use existing ones.

2025 - Simón Gutiérrez Brida 18

Exceptions - Example

2025 - Simón Gutiérrez Brida 19

Catching, rethrowing exceptions
Let’s consider a custom, checked, exception called CheatingIsBadMkay. We
have a checked exception (IllegalAccessException) which we want to rethrow as
a CheatingIsBadMkay exception.

Using try-catch, we can “try” to execute some code, and if an exception is
thrown somewhere in that code, we can “catch” it and do something, here we
are rethrowing the exception by encapsulating it into another.

2025 - Simón Gutiérrez Brida 20

Catching, with unchecked exceptions

A les convoluted example, let’s consider we want to transform a string
representation of a number into an actual number, but return a default value
if the transformation fails.

Introduction to Systems Programming
Equality vs Identity

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 21

2025 - Simón Gutiérrez Brida 22

Equality in primitive types

On primitive types, using the equality operator, ==, means comparing two
values. Example: 2 == 3 (false), 42 == 42 (true), ‘a’ != ‘b’ (true).

On non-primitive types, using the equality operator, ==, means comparing if
two references are the same. Is like comparing pointers in C. In Java, each
object has an unique ID called a hashcode, any two objects will return true
when using the == operator iff their references are the same.

2025 - Simón Gutiérrez Brida 23

Equality in primitive types

On non-primitive types, using the equality operator, ==, means comparing if
two references are the same. Is like comparing pointers in C. In Java, each
object has an unique ID called a hashcode, any two objects will return true
when using the == operator iff their references are the same.

This is usually not what we want. In general we consider two objects to be
equal, if their states are equal.

2025 - Simón Gutiérrez Brida 24

Equal method

Any class in Java will have some methods already implemented, although
with a simple implementation, even if not written in the class’ code.

We have already seen one of these method, public String toString(), this
method is used to get a String representation of an object.

Another method is public boolean equals(Object other), this method takes an
object and compares the current object to the argument. It takes an Object
because there is no way to make this method in Java in any other way.
Using Object makes the argument type compatible with any possible class.

To implement we will use this:

2025 - Simón Gutiérrez Brida 25

Demo

Let’s write an equals
method (*).

(*) Java has a built in operation called instanceof used as: o instanceof Class that returns true iff o is an instance of Class.

