Introduction to Systems Programming
Class 3

2025 - Simén Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre)

A review on types

A type defines a set of values and which operations that can be applied
to those values. In Java we have primitive and non-primitive types.
Examples for the first are int, float, char, boolean; examples for the later
are String, Circle, TicketMachine.

A non-primitive type is defined by a Class, i.e,, a Class is a type, and
objects are the values for that type/Class. In the case of classes, the
Class, or type, not only a set of values, it also defines the operations that
can be invoked on those values.

2025 - Simén Gutiérrez Brida

In the last chapter ...

A class defines the data (Fields), Methods/operations, and Constructors.
Fields determine the state space of all class’ objects; Methods the

operation that can be invoked on a particular object; and constructors
define how new objects are created.

2025 - Simén Gutiérrez Brida

In the last chapter ...

Field structure
Class structure

public class ClassName { private Type fieldName;

//ICLASS MEMBERS private type fieldName;

2025 - Simén Gutiérrez Brida

In the last chapter ...

Class structure Constructor structure

lic cl lassN
public class ClassName { public ClassName(/*ARGUMENTS*/) {

/ICLASS MEMBERS }//BODY

2025 - Simén Gutiérrez Brida

In the last chapter ...

Method structure

Class structure public Type methodName(/*ARGUMENTS*/) {

public class ClassName { }//BODY

[ICLASS MEMBERS
public type methodName(/*"ARGUMENTS*/) {

} }//BODY

2025 - Simén Gutiérrez Brida

In the last chapter ...

Arguments: a list (possibly empty), of elements with the format
type| Type name
separated by a comma.

inta
String author
char c

2025 - Simén Gutiérrez Brida

body:
e statement;

e statement; body
e {body}

2025 - Simén Gutiérrez Brida

In the last chapter ...

statement:

assignment
variable declaration
return

method call

If statement
(does not need a ; at the end)

In the last chapter ...

assignment: variable = expression If statement:
variable declaration: if(condition) {
Type variableName = expression //IBODY
type variableName = expression }
return: if(condition) {
return expression /ITHEN-BODY
} else {
/[ELSE-BODY
method call: }

obj.methodName(/*arguments®/)
The condition must be a boolean expression

2025 - Simén Gutiérrez Brida

In the last chapter ...

An expression is a “string" of Java code that can be evaluated into a
value, some examples:

e A value (a string, an int, a char, an object, etc)

e A unary expression (ltrue, i++, --i)

e A binary expression, i.e.. expression binary_op expression (3+1, a +1,
“‘Hello" + “" + “World!", 4 * 3)

e A method call (for a method that returns a value)

e A constructor call (hew ClassName(/*arguments®/))

2025 - Simén Gutiérrez Brida

In the last chapter ...

public void insertMoney (int amount)

{
if (amount > 0) {
balance = balance + amount;
e
else { .- L
(f System out.println ("Use a positive amount: " + amount):
Y
}

This is not a good practice, the method is having two
responsibilities. We now can use assertions for this

2025 - Simén Gutiérrez Brida

10

public class Scopy {
private int x;

public Scopy(int valueForX) {
x = valueForX;

}
public void printScopes() {

System.out.printin(x);
for (intx = 0; x <10; x++) {
System.out.printin(x);

}

System.out.printin(x);
{
int x =42;
System.out.printin(x);
}
{
int x = 83;
System.out.printin(x);

}

System.out.printin(x);

2025 - Simén Gutiérrez Brida

In the last chapter ...

Let's discuss about printScopes, the
scopes and life cycles of all Xs.

11

In the last chapter ...

public class Scopy {
private int x;

public Scopy(int valueForX) {
x = valueForX;

}
public void printScopes() {

System.out.printin(x):
for (intx =0; x <10; x++) {
Syste‘ﬁ.out.hrintln(x);

}
System.out.printin(x):
{ |
int x =42;
System.out.printin(x);

}
{

int x = 83;
System.out.printin(x);

}

System.out.printin(x);

2025 - Simon Gutiérrez Brida 12

In the last chapter ...

public class Scopy {

private int x;
public Scopy(int valueForX) { What about this?
x = valueForX;
} public void printScopes(int x) {
G e System.out.printin(x);
public void printScopes() { ;
System.out.printin(x): for (int x = 0; x < 10; x++) {
for (int X = 0; X < 10; x++) { System.out.printin(x);
Syste‘ﬁ.out.hrintln(x); }
} System.out.printin(x);

System.out.printin(x): {
{
int >l< = 42; int x =42;
System.out.printin(x); System.out.printin(x);
} }

{ : :
int)l(- 83 System.out.printin(x);

System.out.printin(x); }

}

System.out.printin(x);

2025 - Simon Gutiérrez Brida 13

Introduction to Systems Programming

Collections

2025 - Simén Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre)

14

The need to group objects/values

e Many applications involve object collections:
o Personal organizers.
o Library catalogs.
o Student registration systems.

e The number of elements to store varies with the application, and
many times dynamically for the application.
o ltistypically required to be able to add elements.
o ltistypically required to be able to remove elements.

2025 - Simon Gutiérrez Brida 15

Java libraries

e Groups of useful classes.

e We do not need to write everything from scratch
o We may reuse previously developed solutions!

e Java organizes libraries in packages.
e Object grouping into collections is a recurring need in programming.

o The java.util package contains classes that implement many
collection implementations.

2025 - Simén Gutiérrez Brida

16

An example on collections

Let's code for a bit
(music-organizer-vl)

2025 - Simén Gutiérrez Brida

17

Collections

e We must specify:
o The collection kind: ArrayL.ist.
o The type of the objects to be stored in the collection.

private ArrayList<String> files;
We will say this is “a list of strings” (implemented over arrays).

2025 - Simén Gutiérrez Brida

18

Generic Classes

e Collections are generic or parameterized types.

e ArrayList implements all the functionalities of a list:

o add, get, size, etc.

e The type parameter indicates the kind of objects that we want a list
to be composed of:

2025 -

o ArrayList<Person>
o ArraylList<integer>
o ArrayList<String>
o etc.

Simoén Gutiérrez Brida 19

The structure of an ArrayList object

"MorningBlues.mp3" "DontGo.mp3"

2025 - Simén Gutiérrez Brida

20

Characteristics of the list collections
e They can increment their size as needed.

e They maintain a private size counter:
o size() is the corresponding query.

e They maintain the objects of the collection in a sequential order.
o Each element/value has a specific index.
o Inserting/deleting elements will affect the indexes of existing
elements in the list.

e The details of how the list's functionalities are implemented are kept
hidden.
o Does it matter?
o Can we use list collections without knowing how these are
internally implemented?

2025 - Simén Gutiérrez Brida

21

Introduction to Systems Programming

Collections and iteration

2025 - Simén Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre)

22

lteration

e Quite often we will want to perform certain actions an arbitrary
number of times.
o E.g, printall file names in the music organizer.
o How many files does a music organizer have?

e The vast majority of programming languages provide us with
sentences that allow us to repeat (or iterate through) actions.

e Java provides various kinds of iteration statements.
o We will start by seeing the for-each iteration statement.

2025 - Simén Gutiérrez Brida

23

lteration

e We will often need to repeat some actions multiple times.

e Iteration provides us with a mechanism to control how many times we
repeat such actions.

e In the context of collections, we will often need to repeat some
actions for every element in a collection.

2025 - Simén Gutiérrez Brida

24

lteration

for (T elem : collection) {
[/statements to be repeated

}

e The collection must be of type T.
o E.g., ArrayList<T> in this case.

e The interpretation of this statement is:
o For every element (which we named “elem”) in the collection (which we
named “collection”) execute the following statements (the “statements to
be repeated”).

2025 - Simon Gutiérrez Brida 25

An example on iterations

Let's code for a bit
(in loab-classes, calculate the average credits)

2025 - Simén Gutiérrez Brida

26

Selective Processing

public ArrayList<String> findFiles(String searchString) {
ArrayList<String> foundFiles = new ArrayList<String>();
for (String filename : files) {
if (filename.contains(searchString)) {
foundFiles.add(filename);

}
}

return foundFiles;

}

Through statement nesting, we can put conditional statements inside iteration

statements, and get selective processing

2025 - Simén Gutiérrez Brida

27

Characteristics of For-Each Loops

Syntactically simple, with clear semantics
Termination of iteration occurs naturally.
One cannot alter the collection (an error will occur if one tries to).
We do not explicitly have an index to work with.
o For-Each loop also work with collections that do not have
ordering (do not support indexed access).
e One should not prematurely exit a for-each loop (before visiting all
collection elements)
o E.q.if we are looking for the first element that matches a
condition.
o This can be generalized to: loops should always end when the
condition to loop becomes false.
e For-each loops correspond to a form of iteration known as “definite
iteration”

2025 - Simén Gutiérrez Brida

28

Introduction to Systems Programming

Collections and iteration. While loops

2025 - Simén Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre)

29

Element search is an “indefinite” iteration

e In general, we cannot predict (before a search is performed), exactly
how many objects or places we will have to traverse or visit.

e Although in many cases we may have an absolute limit (humber of
elements, number of positions, etc).

e Infinite iteration is a possibility.
o Typically an error.

2025 - Simén Gutiérrez Brida

30

The While-loop

e A for-each loop repeats the loop body once per each item in a
collection.

e We often need more flexibility than what the for-each loop provides.

e We can use a boolean condition to decide if we want to continue or
not with the iteration.

e The while loop provides such control level.

2025 - Simén Gutiérrez Brida

31

The While-loop

while (booleanExpression) {
[/while's body
;

The booleanExpression must be an expression of type boolean.
o E.g,i<size.

The interpretation of this statement is:

o While the condition (which we named “booleanExpression”) is true,
execute the following statements (the “while’'s body").

2025 - Simén Gutiérrez Brida

32

The While-loop

e A for-each loop repeats the loop body once per each item in a
collection.

e We often need more flexibility than what the for-each loop provides.

e We can use a boolean condition to decide if we want to continue or
not with the iteration.

e The while loop provides such control level.

2025 - Simén Gutiérrez Brida

33

The While-loop, an example

public int div(int a, int b) {
assert a >= 0 : "a must be positive";

assert b > 0 : "b must be greater than zero";

intres =0;

while (a >= D) {
a=a-b;
res=res + 1;

}

return res;

2025 - Simén Gutiérrez Brida

34

For-Each and While

for (T elem : collection) {
doSomething(elem);
}

int index = 0;

while (index < getSize(collection)) {
T elem = getElemAt(collection, index);
doSomething(elem);
index++;

}

2025 - Simén Gutiérrez Brida

35

For-Each and While, using ArrayL.ist

for (T elem : collection) {
doSomething(elem);

| @

int index = 0;

while (index < collection.size()) {
T elem = collection.get(index);

doSomething(elem);
iIndex++;

}

2025 - Simén Gutiérrez Brida

36

for-each versus while

e For-each:
o Simpler and easier to write.
o Safer:termination is guaranteed.

e While:
o It's not limited to collections.
o We have to be careful: we may end up having infinite loops.

2025 - Simén Gutiérrez Brida

37

Search in a collection

e A fundamental tosk.
e From the point of view of iteration, it's inherently “indefinite”.

e We have to consider both success (element found) as failure (search
is exhausted).

e Both success and failure are cases that must make the loop
condition false.

e Remember that the collection may be empty!

2025 - Simén Gutiérrez Brida

38

Search in a collection

int index = 0;
boolean found = false;
while(index < files.size() && !found) {
String file = files.get(index);
if(file.contains(searchString)) {
// We don't need to keep looking.
found = true;
3
else {
index++;
3
3
/ / Either we found it at index,
/ | or we searched the whole collection.

2025 - Simén Gutiérrez Brida

While-loop does not need collections!

public boolean isPrime(int value) {

assert value >= 0 : "value must be positive";
int divisors = 0;
int divisor = 1;
while (divisor <= value) {

if (value % divisor == 0) {

divisors++;

}

divisor++;
}

return divisors == 2;

}

2025 - Simén Gutiérrez Brida

40

Java Code, statements update

statement;

]

]
body: o
e statement; o
e statement; body o
e {body}

2025 - Simén Gutiérrez Brida

assignment
variable declaration
return

method call

If statement
(does not need a ; at the end)

For-each
(does not need a; at the end)

While

(does not need a; at the end)

41

