
Introduction to Systems Programming
Features of classes and objects

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 0

2025 - Simón Gutiérrez Brida 1

In the last chapter …

 An object is an instance of a particular class, which represents a value
(with related operation) for specific problem domain.

A class, defines all possible object with a particular collection of data and
operations.

Objects represent entities from the real world, in a specific problem
domain, and even “internal” software entities. And classes represent all

objects of a specific kind.

2025 - Simón Gutiérrez Brida 2

In the last chapter …

A class defines the data (Fields), Methods/operations, and Constructors.

Fields determine the state space of all class’ objects; Methods the
operation that can be invoked on a particular object; and constructors

define how new objects are created.

2025 - Simón Gutiérrez Brida 3

Java code

public class ClassName {

 //CLASS MEMBERS

}

private Type fieldName;

private type fieldName;

Class structure
Field structure

2025 - Simón Gutiérrez Brida 4

public class ClassName {

 //CLASS MEMBERS

}

Class structure Constructor structure

public ClassName(/*ARGUMENTS*/) {
 //BODY
}

Java code

2025 - Simón Gutiérrez Brida 5

public class ClassName {

 //CLASS MEMBERS

}

Class structure
Method structure

public Type methodName(/*ARGUMENTS*/) {
 //BODY
}

public type methodName(/*ARGUMENTS*/) {
 //BODY
}

Java code

2025 - Simón Gutiérrez Brida 6

Java code, arguments

Arguments: a list (possibly empty), of elements with the format
type|Type name

separated by a comma.

int a
String author
char c

2025 - Simón Gutiérrez Brida 7

Java code, body

body:
● statement;
● statement; body
● { body }

statement:
● assignment
● variable declaration
● return
● method call

2025 - Simón Gutiérrez Brida 8

Java code, body

assignment: variable = expression

variable declaration:
Type variableName = expression
type variableName = expression

return:
return expression

method call:
obj.methodName(/*arguments*/)

2025 - Simón Gutiérrez Brida 9

Java code, expressions

An expression is a “string” of Java code that can be evaluated into a
value, some examples:

● A value (a string, an int, a char, an object, etc)
● A unary expression (!true, i++, --i)
● A binary expression, i.e.: expression binary_op expression (3 + 1, a + 1,

“Hello” + “ ” + “World!”, 4 * 3)
● A method call (for a method that returns a value)
● A constructor call (new ClassName(/*arguments*/))

2025 - Simón Gutiérrez Brida 10

What is an object in OOP?
It’s a software notion: a “machine” known through the operations it admits or
supports.

We can consider three kinds of objects:

● Physical objects: They reflect material objects in the world or system being
modeled by software, e.g., a bicycle, a car, a book

● Abstract objects: They describe abstract notions from the world or system
being modeled, e.g., a plan or schedule, an appointment

● Software objects: They represent notions that are pure “internal” software
abstractions, e.g., an iterator, an array, a linked list

A primary aspect of object oriented programming is its modeling ability: it allows
one to connect in a relatively natural way software objects with entities from the
problem domain (e.g., real world entities).

2025 - Simón Gutiérrez Brida 11

Objects and Classes

 Each object belongs to a specific class, which defines the information or
data that the objects hold, and the operations that are applicable to
those objects. The object’s data and operations are collectively called

features.

2025 - Simón Gutiérrez Brida 12

Objects and Classes, examples

A class Triangle, that represents all triangles in a 2D plane with a specific
width and height, a specific color, position (x, y), and if it’s visible or not in

the plane.

A class City, representing all cities, with a particular name, habitants, and
country.

A class Book, representing all books with a particular title, author, pages,
and summary.

2025 - Simón Gutiérrez Brida 13

Classes

A class represents a category of things.

An object is one of such things.

A class is a description of all possible runtime objects,
their state space, and operations that can be invoked on
those objects.

2025 - Simón Gutiérrez Brida 14

Class, instance, generating class

2025 - Simón Gutiérrez Brida 15

Object vs Classes

Classes only exist as definitions (like a C struct):

● They are defined by the class text
● They describe the features (fields, methods) of all objects associated

with the class (all its potential instances)

Objects only exist at runtime (like a variable):

● They are “visible” in the text of a program through names that denote
objects at runtime, i.e., variables (square1, myCircle, etc), as the result
of an expression (myCourse.getStudentByID(42)).

2025 - Simón Gutiérrez Brida 16

Method invocation

Invoking methods on objects is what allow us to interact with objects and
reach a solution to a specific problem.

A method m can only be invoked on an object o of a class c, if and only if,

o is an instance of class c, and class c defines method m.

2025 - Simón Gutiérrez Brida 17

Queries and Commands

Methods can be divided into:

● Commands, these methods modify the state of an object, e.g.:
changing the size of a triangle.

● Queries, these methods retrieve, or compute, information of an
object, e.g.: retrieving the price of a ticket.

The query-command separation principle establish that a method
must either be a command and not return any value; or a query and
only return a value without modifying the state of the object.

Introduction to Systems Programming
Conditional composition, Variables,

Scope and lifetime.

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 18

2025 - Simón Gutiérrez Brida 19

Going back to the naive ticket machine

Let’s explore the example again, trying to replicate how a real ticket
machine would work and see what happens.

2025 - Simón Gutiérrez Brida 20

Going back to the naive ticket machine

Let’s explore the example again, trying to replicate how a real ticket
machine would work and see what happens.

Does the current implementation reflects what is expected of a ticket
machine?

2025 - Simón Gutiérrez Brida 21

Going back to the naive ticket machine

● Their behavior is inadequate, due to various reasons:
○ Inputs are not appropriately validated.
○ Change is not returned to the user.
○ Initialization is not appropriately validated.

● How can we improve the design and implementation of these
machines?
○ We will need more sophisticated behavior.

2025 - Simón Gutiérrez Brida 22

If statement

2025 - Simón Gutiérrez Brida 23

Java code, body, updated

body:
● statement;
● statement; body
● { body }

statement:
● assignment
● variable declaration
● return
● method call
● If statement

(does not need a ; at the end)

2025 - Simón Gutiérrez Brida 24

Java code, body, updated

assignment: variable = expression

variable declaration:
Type variableName = expression
type variableName = expression

return:
return expression

method call:
obj.methodName(/*arguments*/)

If statement:

if(condition) {
 //BODY
}

if(condition) {
 //THEN-BODY
} else {
 //ELSE-BODY
}

The condition must be a boolean expression

2025 - Simón Gutiérrez Brida 25

One example of if-statement in the naive ticket machine

2025 - Simón Gutiérrez Brida 26

One example of if-statement in the naive ticket machine

Later we will see that this is NOT a good practice!
 Can you guess why it is not?

2025 - Simón Gutiérrez Brida 27

How could we refund balance back to the user?

Let’s code for a bit

2025 - Simón Gutiérrez Brida 28

Variables

Variables store values during their lifecycle, this is determined by their scope.

Let’s see an example!

2025 - Simón Gutiérrez Brida 29

Variables
public class Coordinate2D {
 private int xCoord;
 private int yCoord;

 public Coordinate2D(int x, int y) {
 xCoord = x;
 yCoord = y;
 }

 public void setXCoord(int newX) {
 xCoord = newX;
 }

 public String toString() {
 int x = xCoord;
 int y = yCoord;
 String rep = "(" + x + ", " + y + ")";
 return rep;
 }
}

Their scope is the whole class, their lifecycle is the lifecycle of the
object.

fields

Their scope is the method/constructor, their lifecycle is the
execution of the method/constructor.

arguments

arguments

Lo
ca

l
va

ria
bles

The scope of a variable/field is the inside of the block
where it was defined.

Introduction to Systems Programming
Preconditions. Object interaction.

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 30

2025 - Simón Gutiérrez Brida 31

Precondition

It is a condition that must be met before starting the
execution of a method, or constructor.

● It is an obligation of the invoker (the client of the method) to ensure that
the precondition holds, before calling the method.

● If the precondition does not hold, the method (and consequently the
object that contains it) may behave in an incorrect way.

● Enforcing the satisfaction of preconditions protects the state of objects.

● It supports/enable encapsulation.

2025 - Simón Gutiérrez Brida 32

Precondition - Example

2025 - Simón Gutiérrez Brida 33

Precondition - Example

2025 - Simón Gutiérrez Brida 34

Precondition - Example

2025 - Simón Gutiérrez Brida 35

Assertions

Java supports assertions, which will allow us to easily implement precondition
checking. If the condition of an assertion is false, the program will stop, and an
error message will be shown.

2025 - Simón Gutiérrez Brida 36

Assertions - Example

2025 - Simón Gutiérrez Brida 37

Assertions - Example

2025 - Simón Gutiérrez Brida 38

Assertions - Example

2025 - Simón Gutiérrez Brida 39

Abstraction and Modularization

Abstraction: the ability of ignoring details of the parts to focus at a higher level
of the problem.

Modularization: the process of dividing the whole in well defined parts, that can
be built and analyzed separately, and whose interaction is also given a well
defined way.

2025 - Simón Gutiérrez Brida 40

A digital clock

We want this , but optionally we could also want this

2025 - Simón Gutiérrez Brida 41

A digital clock

We could just think about a two (or more) number displays

2025 - Simón Gutiérrez Brida 42

A digital clock

public class NumberDisplay {

 private int value;
 private int limit;

 //CONSTRUCTORS

 //METHODS

}

2025 - Simón Gutiérrez Brida 43

A digital clock

public class ClockDisplay {

 private NumberDisplay hours;
 private NumberDisplay minutes;

 //CONSTRUCTORS

 //METHODS

}

2025 - Simón Gutiérrez Brida 44

Object Diagram

2025 - Simón Gutiérrez Brida 45

Class Diagram

2025 - Simón Gutiérrez Brida 46

Primitive types vs Object types

It looks like C pointers without any pointer
operators

2025 - Simón Gutiérrez Brida 47

Primitive types vs Object types - Example

What is the output for each case?

2025 - Simón Gutiérrez Brida 48

Display Clock - Let’s work on it

Let’s code for a bit

