
Introduction to Systems Programming
Introduction

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 0

2025 - Simón Gutiérrez Brida 1

Lecturer Introduction

Undergraduate in
Computer Science

PhD in Computer
Science

Researcher on
Software

Engineering and
Formal Methods

2025 - Simón Gutiérrez Brida 2

Lecturer Introduction

I focus on improving software quality. I
approach this problem by researching

automatic program/model repair,
automatic test generation and test

evaluation; and improving automatically
generated test inputs.

2025 - Simón Gutiérrez Brida 3

Lecturer Introduction

I have delved in the darkest corners of
Java and will try to make a bash script

anytime I can.

2025 - Simón Gutiérrez Brida 4

Course Introduction

Lecture days, exams, and office hours

● Lectures:
○ Mondays 16:15 - 18:15 E2-201 (SC)

● Tutorials:
○ Group A:

■ Thursdays 8:00 - 10:00 E2-201 (SC)
○ Group B:

■ Fridays 8:00 - 10:00 E2-201 (SC)

● Final exams:
○ Exam A, June 26Th 14:00 - 17:00
○ Exam B, July 14th 14:00 - 17:00

● Office hours:
TBA (Office TBA)

● Email address:
simon.brida@gtiit.edu.cn

○ I prefer email over
moodle messages.

○ The course’s moodle
forum is also a good
option.

You can always come to my office,
if I’m there and I’m free I can
give office hours.

You can also send me an email
asking for office hours and I
will try to find the best
available time.

mailto:simon.brida@gtiit.edu.cn

2025 - Simón Gutiérrez Brida 5

Course Introduction

One of the main tool for this course, BlueJ, works fine in Windows, Linux, and macOS.
But later on the course we will use other tools that are already available on Linux and
macOS, although can be installed (with a bit of work) in Windows. In my case I’ll be
using Ubuntu 22.04.

I will also provide online resources and can help you installing Ubuntu and any tool we
will use.

Except when using BlueJ, we do not require an IDE (Integrated Development Environment)
since our code will be relatively small. Even though an IDE usually is very helpful, is
important that we learn what happens “Under the hood” instead of relying on just
“pressing buttons” that we don’t really understand what they do.

2025 - Simón Gutiérrez Brida 6

Course Introduction

7

Course Introduction

What is this course about?

We will learn about Object-oriented programming and its
fundamentals; we will also learn fundamental concepts of
software design, construction and maintenance; we will
apply these concepts to the construction of quality
software. The course will end with a short comparison of
Java, Python, and C++ to understand how these languages
would allow us to apply Object-oriented programming, and
how they differ. (*)

The weekly plan and more information is posted in the
course’s moodle, although it is subject to change.

(*) This is a very simplified version of what we will see.

2025 - Simón Gutiérrez Brida

8

Evaluation and grades

2025 - Simón Gutiérrez Brida

● Assignments:
○ The course will have several graded assignments.
○ Assignments will have a hard deadlines, no submissions will be

accepted after the deadline.
○ Submissions will always be through moodle, no email submissions

will be accepted.
○ If an assignment is not submitted, it will have a grade of zero.
○ Assignments will be made in groups of 2 students.

● Finals: final exams will include practical and theoretical questions,
they will be “open book”.

● The final grade of the course will be based on the final exam’s grade,
and assignments. The grade will be calculated as:
average(assignments) * 0.3 + FE * 0.7.

9

Some extra notes

2025 - Simón Gutiérrez Brida

● Anyone can make mistakes, that how we learn.
● If you don’t agree with or don’t understand something

I say, please tell me.
● We will use books as tools, this means we are not

required to fully read all books, and we are not
required to follow the chapters in their order.

● A lot of times there are multiple correct answers for
the same question/problem.

● I’ll do my best to update the course’s Moodle page
with slides and code examples, please let me know if I
forget.

● We should always have a 10 minute break on classes
that are 2hs long after 50 or 60 minutes, please
remind me if I forget.

● We should end the class 10 minutes early (GTIIT
policy), please remind me if I forget.

2025 - Simón Gutiérrez Brida 10

Course structure

● Object Oriented Programming [in Java].
○ This will represent the bulk of the

course.

● Introduction to C++.

● Introduction to Python.

● Comparing Java, Python, and C++.

2025 - Simón Gutiérrez Brida 11

Object Oriented Programming [in Java]

● Objects and classes
● Object interaction and composition
● Program parametrization
● Aggregations (collections) and their treatment
● Ad hoc data representation
● Class design
● Software applications structure
● Inheritance and abstraction
● Error treatment (exceptions)
● Design by Contract and Software Specification

2025 - Simón Gutiérrez Brida 12

Introduction to C++

● Managing dynamic memory ourselves.
● Pointers.
● Arguments, by value, by reference.
● Classes.
● Constructors/Destructors/Assignments.
● Templates and Generic Classes.
● Inheritance and Polymorphism
● Generic Algorithms (function objects)

2025 - Simón Gutiérrez Brida 13

Introduction to Python

● What is an interpreter?
● What is Python?
● Python characteristics, programming in Python.
● Python Environment.

14

Resources

First of all, here are the main tools we will use. Some can
be easily installed in any OS, others will be easier to use
in macOS or Linux (I’ll be using Ubuntu 22.04), there will
be a full list of tools provided in the course’s Moodle
page.

bluej: A Java IDE designed for teaching/learning.
g++: GNU C++ Compiler (it’s basically the same as gcc with different
flags).

Any simple text editor: There’s no need for an IDE outside of bluej,
our code will be relatively simple.

Terminal/Console: we will do some work that requires a
terminal/console.

man: This is a tool that everyone should always consider, it allows to
read manuals for almost every application installed, it also contains C
and C++ manuals.
Python’s interpreter (3.0+)

2025 - Simón Gutiérrez Brida

2025 - Simón Gutiérrez Brida 15

Important terminology

Program: a set of instructions that can be executed i.e.: the code you write.

Algorithm: a finite set of instructions that can be executed

Executable: a file with a specific format, e.g.: ELF, which contains a compiled program
which can be executed.

Process: an instance of an executable that is being executed.

* It’s common to see “Program”, “Executable”, and “Algorithm” used interchangeably.

2025 - Simón Gutiérrez Brida 16

Example (Division)

Theorem: Given n and d with d ≠ 0, there exist q and r s.t.:

i. n = (d × q) + r
ii. 0 ≤ r < d

Algorithm: Given n and d with d ≠ 0, find q and r s.t.:

i. Start with q in 0
ii. Subtract d from n

a. If the result is negative, restore n and set r as n
b. If the result is positive, increase q by 1, got back

to ii
iii. Return q and r

2025 - Simón Gutiérrez Brida 17

Example (Division)

int divide(int n, int d) {
 int q = 0;
 int r = n;
 while (r >= d) {
 r = r - d;
 q++;
 }
 return q;
}

Is this a program?

2025 - Simón Gutiérrez Brida 18

Example (Division)

int divide(int n, int d) {
 int q = 0;
 int r = n;
 while (r >= d) {
 r = r - d;
 q++;
 }
 return q;
}

Is this an algorithm?

2025 - Simón Gutiérrez Brida 19

Coding

● Meets requirements

● Flexible and easy to maintain

● Reliable (tested and debugged)

● Portable

● Efficient

● Self documented

2025 - Simón Gutiérrez Brida 20

Coding

● Meets requirements

● Flexible and easy to maintain

● Reliable (tested and debugged)

● Portable

● Efficient
○ never start by optimizing, only optimize after

the software correctly solves the main problem.

● Self documented

2025 - Simón Gutiérrez Brida 21

Coding
#include<stdio.h>

#define LENGTH 256

/*
* Takes a path to a file and prints how many lines the file has.
*/
int main(int argc, char ** argv) {
 const char * const fname = argv[1]; //check argc > 1
 FILE * file = fopen(fname, "r"); //check result
 char line[LENGTH];
 // read file line by line
 while(fgets(line, LENGTH, file)) {
 // DO SOMETHING WITH LINE
 }

 // CHECK BETWEEN EOF OR IO FAILURE

 fclose(file);

 return 0;
}

2025 - Simón Gutiérrez Brida 22

Coding

● Breaking one functionality during
the development of another.

● Complexity in understanding and
maintaining the code.

● Difficult to test feature in isolation

● Rigid (a small change causes a
cascade of changes).

● Difficult to reuse common functionalities.

Coding

2025 - Simón Gutiérrez Brida 23

int main (int argc, char ** argv) {
 char *path1; char l1[80]; char l2[80]; char l3[80];
 int fd1 = open(argv[1], O_RDONLY | O_CREAT);
 char c; int i=0;

 while ((read(fd1, &c, 1) == 1 && i < 80) {
 l1[i++]=c;
 if(c=='\n') break;
 }

 while ((read(fd1, &c, 1) == 1 && i < 80) {
 l2[i++]=c;
 if(c=='\n') break;
 }

 while ((read(fd1, &c, 1) == 1 && i < 80) {
 l3[i++]=c;
 if(c=='\n') break;
 }

 ...

}

Coding

2025 - Simón Gutiérrez Brida 24

Classes and objects

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 25

Starting with a figures demo

2025 - Simón Gutiérrez Brida 26

Classes and Objects

Objects represent entities from the real world, in a specific problem
domain, and even “internal” software entities. And classes represent all

objects of a specific kind.

2025 - Simón Gutiérrez Brida 27

Classes and Objects

Objects represent entities from the real world, in a specific problem
domain, and even “internal” software entities. And classes represent all

objects of a specific kind.

Some examples:
● A class representing all bicycles,

and a particular red bicycle would be
an object of that class.

2025 - Simón Gutiérrez Brida 28

Classes and Objects

Objects represent entities from the real world, in a specific problem
domain, and even “internal” software entities. And classes represent all

objects of a specific kind.

Some examples:
● A class representing all students,

and a particular student called
“Arthur Dent” with ID number “42”
would be an object of that class.

2025 - Simón Gutiérrez Brida 29

Classes and Objects

Objects represent entities from the real world, in a specific problem
domain, and even “internal” software entities. And classes represent all

objects of a specific kind.

Some examples:
● A class representing all possible

calculators, and a particular
calculator that we are using would be
an object of that class.

2025 - Simón Gutiérrez Brida 30

Methods and parameters

2025 - Simón Gutiérrez Brida 31

Methods and parameters

Once we have an object of
a class, we need to be

able to do something with
it, if not, then it’s

completely useless.

How we do it?

2025 - Simón Gutiérrez Brida 32

Methods and parameters

Once we have an object of
a class, we need to be

able to do something with
it, if not, then it’s

completely useless.

We apply and operation
to the object, most

commonly known as
methods.

2025 - Simón Gutiérrez Brida 33

Methods and parameters

In many cases we want to apply an
operation/method to an object which

involves one or more arguments.

ObjectMethod

Arguments

Invoked / called on

2025 - Simón Gutiérrez Brida 34

Methods and parameters

In many cases we want to apply an
operation/method to an object which

involves one or more arguments.

circle1

changeRadius

2

2025 - Simón Gutiérrez Brida 35

Methods and parameters

Methods can also return a value

circle1

2025 - Simón Gutiérrez Brida 36

Methods and parameters

Methods can also return a value

circle1

getRadius

Invoked on

2025 - Simón Gutiérrez Brida 37

Methods and parameters

Methods can also return a value

circle1

getRadius 2returned

2025 - Simón Gutiérrez Brida 38

Methods and parameters

Methods can also return a value

circle1

getRadius 2returned

Where are methods defined?

2025 - Simón Gutiérrez Brida 39

Methods and parameters

Methods can also return a value

circle1

getRadius 2returned

Where are methods defined?

Inside classes
(we will talk about it later)

2025 - Simón Gutiérrez Brida 40

Data types

A Data Type defines a set of values
and operations that can be applied
to those values.

Examples:

int: set of all integer values.

boolean: set of boolean values (truth values).

floats: set of real values.

char: set of all character values (ASCII).

2025 - Simón Gutiérrez Brida 41

State of an Object

Circle
Class

Circle1

Circle2 Circle3 Circle4

Instances of

Object Object Object Object

2025 - Simón Gutiérrez Brida 42

State of an Object

Circle
Class

Circle1

Circle2 Circle3 Circle4

Instances of

Object Object Object Object

Each object has attributes/fields
Mutable values that define relevant information of the objects

2025 - Simón Gutiérrez Brida 43

State of an Object

Circle1

Object

Each object has attributes/fields
Mutable values that define relevant information of the objects

2025 - Simón Gutiérrez Brida 44

State of an Object

Object

Each object has attributes/fields
Mutable values that define relevant information of the objects

Circle2

2025 - Simón Gutiérrez Brida 45

State of an Object

Object

Each object has attributes/fields
Mutable values that define relevant information of the objects

Circle3

2025 - Simón Gutiérrez Brida 46

State of an Object

Object

Each object has attributes/fields
Mutable values that define relevant information of the objects

Circle4

2025 - Simón Gutiérrez Brida 47

State of an Object

A class defined which
attributes/fields will objects of that

class will have

2025 - Simón Gutiérrez Brida 48

Source Code

 Classes are a way of representing and organizing
computer programs.

2025 - Simón Gutiérrez Brida 49

Source Code

 Classes are a way of representing and organizing
computer programs.

 Classes are written in source code (Java code),
and defines how objects will be represented and

how they will behave..

2025 - Simón Gutiérrez Brida 50

Source Code

 Classes are a way of representing and organizing
computer programs.

 Classes are written in source code (Java code),
and defines how objects will be represented and

how they will behave..

Java code is compiled into a low-level language
called Bytecode that will be executed by a Java

Virtual Machine.

Class Definitions

2025 - Simón Gutiérrez Brida (Based on material by Dr. Nazareno Aguirre) 51

Starting with a ticket machine demo

2025 - Simón Gutiérrez Brida 52

Roadmap of topics

● Fields (also known as attributes)
● Constructors
● Methods
● Parameters
● Assignment

2025 - Simón Gutiérrez Brida 53

Ticket Machine - an external view

● By interacting with an object, we can have clues of what
is the behavior of the object.

● By examining the internal definition of an object, we
can have an insight about how such behavior is
provided, or implemented.

● All Java classes have a consistent internal structure.

2025 - Simón Gutiérrez Brida 54

Structure of a class

public class ClassName {

Fields

Constructors

Methods

}

External definition of a class
(header of a class)

Internal definition of a class
(contents of a class)

2025 - Simón Gutiérrez Brida 55

Fields

● Class fields define the
internal values an object will
hold.

● In BlueJ, one can use the
Inspect option to see the
fields of an object.

● Class fields define the state
space of an object.

public class TicketMachine
{
 private int price;
 private int balance;
 private int total;

 //Additional details omitted.

}

2025 - Simón Gutiérrez Brida 56

Fields

● Class fields define the
internal values an object will
hold.

● In BlueJ, one can use the
Inspect option to see the
fields of an object.

● Class fields define the state
space of an object.

private int price;

visibility modifier type name

2025 - Simón Gutiérrez Brida 57

Constructors
● Class constructors are

responsible of initializing
objects

● They have the same name as
the name of the class.

● They take care of storing
initial values into fields.

● Frequently, constructors
receive external values
(parameters) to perform the
initialization

public TicketMachine(int ticketCost)
{
 price = ticketCost;
 balance = 0;
 total = 0;
}

2025 - Simón Gutiérrez Brida 58

Passing data via parameters

● Parameters are a kind of
variable

○ They take care of passing
data from the “client” of the
method to the method itself.

○ As opposed to fields,
parameters are only
accessible within the
method’s body.

2025 - Simón Gutiérrez Brida 59

Assignment

● Values are stored in fields (and
other kinds of variables) using
assignment statements.

○ A variable can hold a
unique value.

○ The previous value is lost
when variable is assigned
to.

○ E.g.: price = ticketCost;
(*) The type of the expression, and the type of
the variable, must be compatible!

*

2025 - Simón Gutiérrez Brida 60

Methods

● The methods of a class
implement the behavior of the
objects of the class.

○ Methods have a structure,
consisting of a header and a
body.

○ The header defines the
signature of the method.

○ The body comprises the
sentences that implement the
method.

public T name(arguments) {
 //body
}

visibility modifier

 return type *

name

arguments
Empty, or a list of type name

separated by commas

header

(*) If it’s not void, the method must
return a value.

2025 - Simón Gutiérrez Brida 61

Methods (Command - Query separation)

A method either represents a
command which changes the
state of the object in which is
invoked (*). Or represents a
query, which only returns data
associated with the object in
which has been invoked.

public void changePrice(int newPrice) {
 price = newPrice;
}

public int getPrice() {
 return price;
}

(*) Printing is considered as a command.

2025 - Simón Gutiérrez Brida 62

Quick quiz!

2025 - Simón Gutiérrez Brida 63

Analyzing the naive ticket machine

● What issues we can detect from
the initial implementation?

● How we could improve on it?

