page 1/1

TEHNISTIN
715
Student Feedback Report)
Student Id 999022072
Exam Id 202502071048241
Exam Date Friday, Feb 7, 2025
Course Id 202401-104824-1
Course Name INTRODUCTION TO SYSTEMS PROGRAMMING - A
Lecturer Nazareno AGUIRRE
Open question score Original Exam Grade Final Exam Grade
95.00 95.00 95.00
Summary
Question number Comments Actual points Max points
1 7.00 7.00
2 3.00 8.00
3 Perfect 15.00 15.00
4 Perfect 18.00 18.00
5 17.00 17.00
6 18.00 18.00

7 17.00 17.00

T

" Guangdong Technion ID 999022072

! lsrael Institute of Technology

Exam 202502071048241

FRMERETSR ~ MAMARTRRACTNN AR

N

Introduction to Systems Programming - 104824

Exam A
February 7, 2025 -

Your ID Number: 7 7 7 o 7_ 20|71

First name and Surname: Xinvav /l/t"*

Guidelines

1. Duration: 3 hours. Use of calculators, personal dictionaries, electronic devices,
reference material, personal notes or any other extra material is not allowed.

2. Provide explanatory details for each of your solutions. Answers without appropri-
ate explanations and justifications will receive low or no credit. Provide clear and
complete answers in the space provided for answers to each of the exercises.

1. (a) Explain what is a class, and what is its relationship to the concept of object.

What programming elements constitute a class definition? (7p)

(b) What is a class-based type (also known as an object type)? How does a class-

based type differ from a primitive or basic type in Java? (8p)
Answer en’(i*ﬂ

W@ closs 19 & Huefnnt that ‘L@Y}ewnts e E88: wih s]M}Jerftéi%

1y and mathods thet, work ovi it "
] Hemds oLchk ¢ fhe enJ(ijrva hat, wvwente B olas.

L&

| —‘Clo\ss i% %Cmdi{u{d b fielo(,cws)rmcjm and method

) (h) CLxSs—LNMl Jﬂﬂ% (e -l
® ond it owne all Y»@Yeﬁies B closs hos and all methods wnks

— o “]'L\'»é ¢ [ass. | ‘ R
clo\%-\;mrk J(ﬂ 0 B Yw,ec{& Jto l)@ CLQQ‘)CEA }7‘8 mwg‘ omo.l 3’\;5‘ et
T —- ———-— % %im\mtul fhe r«fkfnae.
(A} 0[&% as o
- bueprint
A class-based type is a'type defined By a Java class. When a class is declared, such class defines a type, the type
that is associated with all the objects of the class. Basic types, on the other hand, are the few datatypes that are
directly represented by values; these include int, boolean, float, etc. A main difference between class-based types

and basic types is in how assignment works; assignment to variables of basic types operates as value copying;

assignment to variables of class-based types works as reference copying, thus leading, e.g., to aliasing (different
variables referring to the same runtime object).

etance. H\&J(‘ LQ'FLQS,QY\JCQ Jr’n"»s clo\ss,

O'V\Siha“‘/a 1)

2. Consider the Java implementation of a music playlist, composed of two classeé, and

[**

shown in Figures 1 and 2. A playlist is represented as a list of track objects. Each
track has a title, an artist, and a duration. Your task is to implement method
void removeArtist(String artist) from class Playlist. As described in the
comments, this method must remove from the playlist all the tracks of a given
artist, the artist received as a parameter of the method. (15p)

* A playlist track, consisting of a title, artist and duration.

*/

public class Track {

// title of the track
private String title;

// artist of the track
private String artist;

// duration of the track (in seconds)
private int duration;

// constructor of the track

public Track(String title, String artist, int duration) {
assert title != null && artist != null && duration > 0;
this.title = title;
this.artist = artist;
this.duration = duration;

}

public String getTitle() {
return this.title;

}

public String getArtist() {
return this.artist;

}

public int getDuration() {

return this.duration;

}

Figure 1: A Java class that represents tracks of a playlist.

Answer

Thuic voia[LQMOVQAAB{(Q‘{MJ ﬁwrisb) { | :j
{racks. lQmpvelf (s— S_S@’CAY{'!S{I).@TJ;(" m{{sf))). .

3

3. Consider the music playlist implementation given in Figures 1 and 2. Moreover,
consider the following method of class Playlist, which computes the total duration
of the playlist, by adding the durations of the tracks:

[x*
* Computes the total duration of the playlist, by adding up the
* durations of all the tracks in the playlist.
* @return the total duration of the playlist
*/
public int totalDuration() {
int duration = 0;
for (Track t: tracks) {
duration = duration + t.getDuration();

}

return duration;
}
Your task is to reimplement this method to achieve exactly the same behavior, but
using streams, map and reduce. (18 p)
Answer '

Y‘,\\,\'\C \y\‘\', +o'{'&u>v~m“hm()<

lcturn J“’&CL.SJ(NM\SK)y
.W\o\\{(¢ = g_jdbm'};m())-f

wra O[V\m
duro (0, (oce, em) > ace +5m)
i /18
' @
Perfect

4. Consider the following Java method signature:

import java.util.HashMap;

VAL
* Computes the grandfathers mapping of individuals, given the fathers
* relation represented as a map.
* @param fathers contains the father of each individual, represented
* as a map.
* @return a map containing the grandfather of each individual, given
* the father mapping received as parameter.
*/
public static HashMap<String, String> grandFather (HashMap<String, String> fathers) {

This static method takes as a parameter a map from strings to strings, containing
parenthood information: for a set of names of individuals (the keys), the map
provides their corresponding fathers (the values). Your task is to implement this
method, which builds a map with the grandfathers relationship: if an individual z
has father y, and y has father z, then z has grandfather 2. (17 p)

Answer

'YML ic f{k‘hc MLM'X\KQ"" qm‘j @]MM}H‘L}W HQcL Ma)) <§+m\z
Q*H“a> ‘ffv‘u\nS) { //'Huzw anists o s\ya.w,

% HAQLM& <§‘{'Hh g-hwj M{-l:m‘l'l&r@ = how H&;LMAY<§‘}NV‘ g‘h-wj)()
{Ow é“[ny\a gom P-‘l’L!LH ?k@ éell'z())z {

-_.._J

;g’]«[: (f‘\H/\ﬂH. coptains keg(ﬁ%rs,jg{;vqu(gm)» {
| | jw‘ﬂajrf\us . Yw{(Son,]G\#&H .Seﬂ/alul(fm“\m. Seﬂ/ulm (son)) ,

% \ :sz

Ul‘kwn 3\"0\9\0[hHULH R

|

5. Consider the music playlist implementation given in Figures 1 and 2. Moreover,
consider the following method of class P1laylist, which returns the first track of the
playlist: '

o /R (
* Returns the first track of the playlist.
* If the playlist is empty, it returns null.
*/
public Track firstTrack() {
if (tracks.isEmpty()) {
return null;

}
else {

return tracks.get(0);
}

Write two JUnit unit tests to test the behavior of method firstTrack(). If you
need to add some method or methods to Playlist or Track in order to complete
the tests, do so as part of this exercise. ! (18 p)

Answer

'P\Mit c[ass Jcasjc]:ivfﬂmk() { ,
’\) nyate lealv{]71&«/3[[&;

@&fmhclx
YVL\lc Jus‘u%}irsﬂmc“)
/Plo«vah\'st = hew lea\{s{-t),

10

Bt
?\)Ywaﬁ void Fest 1l leb\;\sﬂ \{ .

quv'tl “%&ls m\ \7 vaL\g{ ‘flys‘)(jva\cué

|

'\mve)a vn(J&ust H v& t

’_—___‘—/"—,‘— . —

e o - — P32 VI e I O
—— i e g B A -

E&— ; “ missing.qubte;‘ S
Dok ock = ron Tk (i, Ty Chon, 3b0);
_{mc '}H\ckl'— hew Tyac}t“; , Eesen ”0),

} /18
e

11

'

6. Consider the Java implementation of posts for a social network application. As part
of this implementation, we have classes Post and MessagePost, shown in Figures 3
and 4. The toString() method of class Post shows the post 1nformat10n in the
following format:

<id>: <title> (submitted <timeStamp>)

Your task is to implement method toString() of class MessagePost so that the
message post information is shown in the following format:

<id>: <title> (submitted <timeStamp>)
Contents: <message>

Implement this method. Do not modify class Post. (17 points)

Answer

4‘\{\\/\ byl 2 N\N&.‘\:oﬂviv\b\)
‘0 \) 6“ ¥\ V\hgu\u,ey

17
0)

Q‘\Hvuz]%w JM— Sjﬁvmz‘;w ‘Lw new
Gi\r\ V\b?)h\ QLQY D\Y\)QMUOV\‘\\ v(k,)

ﬂ*““bgw dov. L\Y\NMK \V‘DVV‘Jc'“‘JVS 3
dvm?)%%\olz» . tx\vYQw\ (Hhis. wssovze) ;
vetwin Sjtrinbgh;lh* ;

12

13

14

import java.util.ArrayList;

/ **

* A music playlist, consisting of a list of tracks.

*/

public class Playlist {

//the list of tracks
private ArrayList<Track> tracks;

//default constructor
public Playlist() {

}

/

%k Xk
*

*/

tracks = new ArrayList<Track>();

Adds a track to the end of the playlist

public void addTrack(Track newTrack) {

}

/

k%
*
*
*
*
*

*/

// assume this method is implemented.

Removes from the playlist all the tracks of a given artist.
All tracks whose artist is the parameter of the method must be
removed from the playlist. All other tracks (of artists other

than the parameter) must be maintained in the playlist.
@param artist is the artist to remove from the playlist.

public void removeArtist(String artist) {

}

//TODO: Implement this method

Figure 2: A Java class representing music playlists.

15

/ %k
* Class Post represents a general post of a social network.
*/

public class Post {

// id of the post
private int id;

// timestamp of the post
private int timeStamp;

// title of the post
private String title;

/%%
* Constructor of class Post
*/
public Post(int id, int timeStamp, String title) {
assert id >= 0 && timeStamp >= O && title != null;
this.id = id; '
this.timeStamp = timeStamp;
this.title = title;

}
/%
* Produces a string representation of the state of the object
*/
public String toString() {
String output = id + ": " + title + " (submitted " + timeStamp + ")";
return output; '
}

Figure 3: A Java class that represents general posts of a social network application.

16

/*%
* Class MessagePost represents a message post of a social
* network. This class extends the general post class.
*/

public class MessagePost extends Post {

// message text
private String message;

/**
* Constructor of class MessagePost
*/
public MessagePost(int id, int timeStamp, String title, String message) {
super (id, timeStamp, title);
assert message != null;
this.message = message;

/%%
* Produces a string representation of the state of the object
*/
public String toString() {
//TOD0 implement this method

Figure 4: A Java class representing message posts of a social network application.

17

