5.7 Metric Space
-
Find the interior and boundary of the following sets. Are they open? bounded? connected?
\(A=\{x\in \R^n:|x|\leq 1\}\)
Since \(A=\overline{B(0,1)}\) which is closed not open
Since \(A\subseteq B(0,2)\), then it is bounded
\(A\) is connected
\(B=\{x\in \R^{n}:x_{i}\in \mathbb{Q}\}\)
\(B^{\circ}=\empty\) and \(\partial B=\R^n\) and \(B\) is not open and not bounded and not connected
Limits of two variable \(f:D\subseteq \R^2\to \R\)
If \(\forall \varepsilon>0,\exists \delta_\varepsilon>0\) such that \(0<||(x,y)-(x_0,y_0)||<\delta\), then \(|f(x,y)-L|<\varepsilon\), then \(\lim\limits_{(x,y)\to (x_0,y_0)}f(x,y)=L\)
-
\(\lim\limits_{(x,y)\to (1,1)}\left[\frac{x^{2}-1}{x-1}+\frac{y-1}{y^{2}-1}\right] =\lim\limits_{(x,y)\to (1,1)}\frac{x^{2}-1}{x-1}+\lim\limits_{(x,y)\to (1,1)}\frac{y-1}{y^{2}-1} =2+\frac{1}{2}=\frac{5}{2}\)
-
\(\lim\limits_{(x,y)\to(0,0)}\frac{\sin(x)\sin(3y)}{2xy}=\frac{1}{2}\lim\limits_{(x,y)\to(0,0)} \frac{\sin x}{x}\cdot3\frac{\sin(3y)}{3y}=\frac{3}{2}\)
-
Prove that \(\lim\limits_{(x,y)\to (0,0)}\frac{x^3+y^3}{x^2+y^2}=0\), we need to show that \(\forall \varepsilon>0,\exists \delta>0\) such that if \(\sqrt{x^{2}+y^{2}}<\delta\), then \(\left|\frac{x^3+y^3}{x^2+y^2}-0\right|<\varepsilon\)
First we bound \(|x^3+y^3|\)
Since \(|x^{3}|=|x|x^{2}=\sqrt{x^{2}}x^{2}\leq \sqrt{x^2+y^2}x^2\) and \(|y^3|\leq \sqrt{x^2+y^2}y^2\)
Now by triangular inequality, we get \(|x^{3}+y^{3}|\leq\sqrt{x^{2}+y^{2}}(x^{2}+y^{2})=(x^2+y^2)^\frac{3}{2}\)
Then \(\left|\frac{x^3+y^3}{x^2+y^2}\right|\leq\left|\frac{(x^2+y^2)^\frac{3}{2}}{x^2+y^2}\right|\leq\left|\sqrt{x^2+y^2}\right|<\delta =\varepsilon\)
-
\(\lim\limits_{(x,y)\to (0,0)}\frac{x^{2}e^{-y^2}}{x^{4}+y^{2}}\)
If the limit exists, then it must exist for all paths that goes through \((0,0)\)
Along \(x=0\), then \(f(0,y)=\frac{0e^{-y^2}}{0+y^{2}}=0\)
Along \(y=x^2\), then \(f(x,x^{2})=\frac{x^{2}e^{-x^4}}{2x^{4}}=\frac{e^{-x^4}}{2x^{2}}\), then \(\lim_{x\to0}\frac{e^{-x^4}}{2x^{2}}=\lim_{x\to0}\frac{1}{2x^{2}\cdot e^{x^4}}=\infty\)
Thus the limit doesn't exist
-
\(\lim\limits_{(x,y)\to (0,0)}\frac{x^{4}y}{x^{4}+y^{4}}\)
Let \(y=kx\), then \(f(x,kx)=\frac{kx^{5}}{x^{4}\left(1+k^{4}\right)}\) and the limit is \(0\) when \(x\to 0\)
If \(y=x^2\), then \(f(x,x^2)\) and the limit is 0 when \(x\to 0\)
Thus we use definition to prove this
Since \(\left|\frac{x^{4}y}{x^{4}+y^{4}}\right|\leq \left|\frac{x^{4}y}{x^{4}}\right|=|y |=\sqrt{y^{2}}\leq \sqrt{x^{2}+y^{2}}\), then let \(\varepsilon >0\), take \(\delta=\varepsilon\), if \(||(x,y)||=\sqrt{x^2+y^2}<\delta\)
Then \(\left|\frac{x^{4}y}{x^{4}+y^{4}}\right|<\delta=\varepsilon\)
-
Define \(f(0,0)\) in a way that extends \(f(x,y)=\frac{xy(x^{2}-y^{2})}{x^{2}+y^{2}}\) to be continuous at \((0,0)\)
Since \(f\) is not defined at \((0,0)\) so we need to prove it's continuous at \((0,0)\)
Recall the squeeze theorem
We need to find the limit of \(f\) at \((0,0)\)
In our case, \(|x|\leq \sqrt{x^2+y^2}\) and \(|y|\leq \sqrt{x^2+y^2}\) and \(|x^2-y^2|\leq |x^2+y^2|\)
Then \(\left|\frac{xy(x^{2}-y^{2})}{x^{2}+y^{2}}\right|\leq|x^2+y^2|\)
So \(-(x^2+y^2)\leq f(x,y)\leq x^2+y^2\), then since \(\lim\limits_{(x,y)\to (0,0)}-x^2-y^2=0=\lim\limits_{(x,y)\to (0,0)}x^2+y^2\), then by squeeze theorem, we get \(\lim\limits_{(x,y)\to (0,0)}\frac{xy(x^{2}-y^{2})}{x^{2}+y^{2}}=0\)
Theorem: Let \(f: D \subseteq \mathbb{R}^2 \to \mathbb{R}\) where \(D\) is a neighborhood of \((0,0)\). Then \(\lim_{(x,y)\to(0,0)} f(x,y) = L\) if and only if the following two conditions hold:
-
For all \(\theta \in [0, 2\pi)\), \(\lim_{r \to 0^+} f(r \cos \theta, r \sin \theta) = L\).
-
The limit is uniform with respect to \(\theta\). This is \(\forall \epsilon > 0\), there exists \(\delta > 0\) such that \(|f(r \cos \theta, r \sin \theta) - L| < \epsilon\) for all \(r \in (0, \delta)\) and all \(\theta \in [0, 2\pi)\).
Example
-
\(\lim_{(x,y)\to(0,0)} \frac{x^4y}{x^4+y^4}\)
Let \(x = r \cos \theta, y = r \sin \theta\), then \(\lim_{r \to 0^+} \frac{(r \cos \theta)^4 (r \sin \theta)}{(r \cos \theta)^4 + (r \sin \theta)^4} = \lim_{r \to 0^+} \frac{r^5 \cos^4 \theta \sin \theta}{r^4 (\cos^4 \theta + \sin^4 \theta)} = \lim_{r \to 0^+} r \left( \frac{\cos^4 \theta \sin \theta}{\cos^4 \theta + \sin^4 \theta} \right) = \lim_{r \to 0^+} (\text{bounded})r = 0\)
So \(\lim_{(x,y)\to(0,0)} \frac{x^4y}{x^4+y^4} = 0\) -
\(\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^2+y^2}\)
Again \(\lim_{r \to 0^+} \frac{(r \cos \theta)^3 (r \sin \theta)}{(r \cos \theta)^2 + (r \sin \theta)^2} = \lim_{r \to 0^+} \frac{r^4 \cos^3 \theta \sin \theta}{r^2 (\cos^2 \theta + \sin^2 \theta)} = \lim_{r \to 0^+} r^2 (\cos^3 \theta \sin \theta) = \lim_{r \to 0^+} (\text{bounded}) r^2 = 0\)
It doesn't depend on \(\theta\). Thus \(\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^2+y^2} = 0\)