4.23 Improper Integrals, comparison and ratio tests
As we said in Lecture 13, sometimes it is difficult to determine if a given improper integral converges or not. So, one idea to determine the convergence is to compare it with an integral that we already know its behavior.
As before, to compare integrals, we assume that the functions are non-negative.
Convention. We often write \(\displaystyle \int_a^\infty f(x)\,dx < \infty\) to indicate that an improper integral of a non-negative function converges.
We begin by stating our first comparison test.
Theorem (Comparison Test)
Let \(f, g\) be two locally integrable functions on \([a, \infty)\). Assume that \(0\leq f(x)\leq g(x)\quad\forall a\leq x<b\)
Then
-
\({\displaystyle\int_{a}^{b}f(x)\,dx<\infty}\) if \({\displaystyle\int_{a}^{b}g(x)\,dx<\infty}\)
-
\({\displaystyle\int_{a}^{b}g(x)\,dx=\infty}\) if \({\displaystyle\int_{a}^{b}f(x)\,dx=\infty}\)
Main idea: These are the only possibilities and \displaystyle\int_{a}^{b}f(x)dx = \sup_{a \le x < b}F(x)...
Proof
Consider \(\displaystyle F(x)=\int^{x}_{a}f(t)dt, G(x)=\int^x_ag(t)dt\), then by theorem \(F(x),G(x)\) are increasing and \(\displaystyle\int^{b}_{a}f(x)dx=\sup\limits_{a\leq x<b}F(x),\int^{b}_{a}g(x)dx=\sup \limits_{a\leq x<b}G(x)\)
Now, since \(f(x)\leq g(x)\), we know that \(\displaystyle F(x)=\int^x_af(t)dt\leq \int^x_ag(t)dt=G(x)\)
Then \(\sup\limits_{a\leq x<b}F(x)<\sup\limits_{a\leq x<b}G(x)\), if \(\sup\limits_{a\leq x<b}G(x)\) is finite, then \(\sup\limits_{a\leq x<b}F(x)\) is also finite.
And if \(\sup\limits_{a\leq x<b}F(x)=\infty\), then \(\sup\limits_{a\leq x<b}G(x)=\infty\)
Example
Determine the convergence of the following improper integral \(\displaystyle I=\int^{1}_{0}\frac{2+\sin(\pi x)}{x^{p}}dx\)
Since \(f(x)=\frac{2+\sin(\pi x)}{x^{p}}\geq0\) in \((0,1]\), then \(\frac{2+\sin(\pi x)}{x^{p}}\leq \frac{3}{x^p}\)
Since \(\displaystyle \int^{1}_{0}\frac{3}{x^{p}}=3\int^{1}_{0}\frac{1}{x^{p}}\), if \(p<1\), then \(\displaystyle\int_{0}^{1}\frac{3}{x^{p}}<\infty\) since \(\displaystyle\int_{c}^{1}\frac{1}{x^{p}}\,dx=\left.\frac{x^{-p+1}}{-p+1}\right|_{c}^{1}=\left .\frac{1}{(-p+1)x^{p-1}}\right|_{c}^{1}\), then \({\displaystyle\int_0^1\frac{2+\sin(\pi x)}{x^{p}}dx}<\infty\)
And since \(\frac{1}{x^{p}}\leq\frac{2+\sin(\pi x)}{x^{p}}\), then if \(p>1\), we know \({\displaystyle\int_0^1\frac{1}{x^{p}}=\infty}\), then \({\displaystyle\int_0^1\frac{2+\sin(\pi x)}{x^{p}}dx}=\infty\)
Thus \(\displaystyle \int_{0}^{1}\frac{2 + \sin(\pi x)}{x^{p}}\, dx = \begin{cases} < \infty & \text{if } p < 1 \\ = \infty & \text{if } p \geq 1 \end{cases}\)
If \(p=1\), it is also divergent easily.
Remark
Since we are studying the convergence of the improper integrals, we may relax the condition \(0\leq f(x)\leq g(x)\quad\forall a\leq x<b\)
Since \({\displaystyle\int_{a}^{b}f(x)\,dx={\displaystyle\int_{a}^{a_1}f(x)\,dx+{\displaystyle\int_{a_1}^{b}f(x)\,dx}}}\), it follows that \({\displaystyle\int_{a}^{b}f(x)\,dx}\) converges if and only if the improper integral \({\displaystyle\int_{a_1}^{b}f(x)\,dx}\) also converges.
Thus, the condition may be replaced by the condition \(0\leq f(x)\leq g(x)\quad\forall a_{1}\leq x<b\) for some \(a_{1}\in[a,b)\).
Now we introduce our second comparison test.
Theorem (Ratio Test)
Let \(f, g\) be two locally integrable functions on \([a,b)\). Assume that \(f(x) \geq 0\) and \(g(x) > 0\) on some subinterval \([a_{1},b)\) of \([a,b)\) and \(\lim_{x\to b^{-}}\frac{f(x)}{g(x)}=M\)
-
If \(0<M<\infty\), then \({{\displaystyle\int_{a}^{b}f(x)\,dx}}\) and \({\displaystyle\int_{a}^{b}g(x)\,dx}\) converge or diverge together.
-
If \(M=\infty\) and \({\displaystyle\int_{a}^{b}g(x)\,dx=\infty}\), then \({\displaystyle\int_{a}^{b}f(x)\,dx=\infty}\).
-
If \(M=0\) and \({\displaystyle\int_{a}^{b}g(x)\,dx<\infty}\), then \({\displaystyle\int_{a}^{b}f(x)\,dx<\infty}\).
Main Idea: We can bound function by definition of limits
Proof
We know that \(\lim_{x\to b^{-}}\frac{f(x)}{g(x)}=M\), this means that \(\forall \varepsilon>0,\exists \delta>0:\left|\frac{f(x) }{g(x)}-M\right|<\varepsilon\) if \(|b-x|<\delta\)
Then \(-\varepsilon<\frac{f(x)}{g(x)}-M<\varepsilon\), then \(M-\varepsilon<\frac{f(x)}{g(x)}<M+\varepsilon\)
Suppose \(M\neq 0,\infty\) and \(\varepsilon \leq \frac{M}{2}\), then \(\frac{M}{2}<\frac{f(x)}{g(x)}<\frac{3M}{2}\), then since \(g(x)>0\) in \([a,b)\), then \(\frac{M}{2}g(x)<f(x)<\frac{3M}{2}g(x)\), \(\forall x\) in \([a,b)\)
Assume first that \({{\displaystyle\int_{a}^{b}f(x)\,dx}}\) is convergent, then \(0<\frac{M}{2}g\left(x\right)<f\left(x\right),\forall x\in[a,b)\)
By comparison test, \({{{\displaystyle\int_{a}^{b}\frac{M}{2}g(x)\,dx}}}\) is convergent, then \({{\displaystyle\int_{a}^{b}g(x)\,dx}}\) is convergent
Assume \({{\displaystyle\int_{a}^{b}f(x)\,dx}}\) is divergent, then \(0\leq f(x)\leq \frac{3}{2}Mg(x)\), again \({{\displaystyle\int_{a}^{b}g(x)\,dx}}\) is divergent
If \(M=\infty\), thus \(\frac{f(x)}{g(x)}>1\) for \(x\in[a_{1},b)\), then \(f(x)>g(x)\) for \(x\in [a_1,b)\)
By comparison test, if \({{\displaystyle\int_{a}^{b}g(x)\,dx}}\) is divergent, then \({{{\displaystyle\int_{a}^{b}f(x)\,dx}}}\) is divergent
If \(M=0\), then \(\frac{f(x)}{g(x)}<1\) for \(x\in [a_1,b)\), then \(f(x)<g(x)\) for \(x\in [a_1,b)\)
Again by the same theorem, if \({{\displaystyle\int_{a}^{b}g(x)\,dx}}\) is convergent, then \({{\displaystyle\int_{a}^{b}f(x)\,dx}}\) is convergent
Example
-
\(f(x)=\frac{2+\sin(\pi x)}{x^{p}}\) in \((0,1]\)
Let \(g(x)=\frac{1}{x^p}\), then \(\lim_{x\to0}\frac{f(x)}{g(x)}=\lim_{x\to0}\frac{\frac{2+\sin(\pi x)}{x^{p}}}{\frac{1}{x^{p}}} =2+\sin(0)=2=M\)
Then \({\displaystyle\int_{a}^{b}\frac{2+\sin(\pi x)}{x^{p}}\,dx=\begin{cases}<\infty & \text{if }p<1\\ =\infty & \text{if }p\geq1\end{cases}}\)
-
Let \(a,b\in \R,a\neq 0\). Analyze the convergence of \(\displaystyle\int^{+\infty}_c\frac{1}{(ax+b)^p}dx\) for \(c>0\)
We know \({\displaystyle\int_0^1\frac{1}{x^{p}}\,dx=\begin{cases}<\infty & \text{if }p<1\\ =\infty & \text{if }p\geq1\end{cases}}\) and \({{{\displaystyle\int_1^{\infty}\frac{1}{x^{p}}\,dx=\begin{cases}<\infty & \text{if }p>1\\ =\infty & \text{if }p\leq1\end{cases}}}}\)
We use ratio test, let \(g(x)=\frac{1}{x^p}\), then \(\lim_{x\to\infty}\frac{x^{p}}{\left(ax+b\right)^{p}}=\lim_{x\to\infty}\frac{1}{\left(a+\frac{b}{x}\right)^{p}} =\frac{1}{a^{p}}=M\)
Now, \(ax+b=0\iff x=-\frac{b}{a}\), then we take \(c>-\frac{b}{a}\), we have \({{{\displaystyle\int_{c}^{\infty}\frac{1}{\left(ax+b\right)^{p}}\,dx=\begin{cases}<\infty & \text{if }p>1\\ =\infty & \text{if }p<1\end{cases}}}}\)
-
Let \(p, q \in \mathbb{Q}\), analyze the convergence of \(f(x)=\frac{1}{x^p(x+1)^q}\) in \((0, \infty)\).
We analyze first the problem at 0. Take \(g(x) = \frac{1}{x^p}\) and consider the limit \(\lim_{x \to 0} \frac{\frac{1}{x^p(1+x)^q}}{\frac{1}{x^p}} = \lim_{x \to 0} \frac{1}{(1+x)^q} = 1 = M\)Hence \(\displaystyle\int_{0}^{1}\frac{1}{x^{p}(1+x)^{q}}d x = \begin{cases} \infty & \text{if } p>1 \\ <\infty & \text{if } p<1 \end{cases}\)
Since \(\displaystyle\int_{0}^{\infty}\frac{1}{x^{p}(1+x)^{q}}d x = \int_{0}^{1}\frac{1}{x^{p}(1+x)^{q}} d x + \int_{1}^{\infty}\frac{1}{x^{p}(1+x)^{q}}d x\)
\(I_1\) \(I_2\)Now we study \(I_2\)
We consider \(g(x) = \frac{1}{x^{p+q}}\), then \(\lim_{x \to \infty} \frac{\frac{1}{x^{p}(1+x)^{q}}}{\frac{1}{x^{p+q}}} = \lim_{x \to \infty} \frac{x^{p+q}}{x^{p}(1+x)^{q}} = \lim_{x \to \infty} \frac{x^{q}}{(1+x)^{q}} = \lim_{x \to \infty} (\frac{x}{1+x})^q = 1^q = 1\)
Thus \(\displaystyle\int_{1}^{\infty}\frac{1}{x^{p}(1+x)^{q}}dx= \begin{cases} <\infty & \text{if }p+q>1 \\ \infty & \text{if }p+q<1 \end{cases}\)Thus \(p<1\) and \(p+q>1\) are the condition of convergence
To analyze integrals that are not non-negative, we introduce the notion of absolute convergence
Definition
Let \(f\) be a locally integrable function on \([a,b)\). We say that the improper integral of \(f\) converges absolutely or it is absolutely convergent if \({\displaystyle\int_{a}^{b}|f(x)|\,dx<\infty}\)
Theorem
Let \(f\) be a locally integrable function on \([a, b)\).
If the improper integral of \(f\) is absolutely convergent, then the improper integral of \(f\) is convergent.
Main idea: \(g(x)=|f(x)|-f(x)\) and comparison test to get \(g(x)\) is local integrable, then discuss \(f(x)\)
Proof
Since \(f\) is integrable, then \(|f|\) is also integrable. Since \(|f(x)|\geq f(x)\), then \(g(x)=|f(x)|-f(x)\geq 0\)
Thus \(g\) is also integrable, and we know that \(\displaystyle\int_{a}^{b}\left|f(x)\right|\,dx<\infty\)
Since \(0\leq g(x)\leq 2|f(x)|\), \(\forall x\in [a,b)\). By comparison test, since \({{{\displaystyle\int_{a}^{b}2\left|f(x)\right|\,dx}}}<\infty\), then \({{\displaystyle\int_{a}^{b}g(x)\,dx}}<\infty\)
Now, \(f(x) = |f(x)| - g(x)\), \(\forall x \in (a, b)\)
\(\displaystyle\int_{a}^{b} f(x) dx = \lim_{c \to b^-}\int_{a}^{c} f(x) dx =\)\(\displaystyle \lim_{c \to b^-}\int_{a}^{c} (|f(x)| - g(x)) dx\) \(\displaystyle= \lim_{c \to b^-}(\int_{a}^{c} |f(x)| dx - \int_{a}^{c} g(x) dx)\)
Both limit exist, then \(\displaystyle= \lim_{c \to b^-}\int_{a}^{c} |f(x)| dx - \lim_{c \to b^-}\int_{a}^{c} g(x) dx < \infty\)
Remark
Kindly reminder: Do not use the methods of integration directly on the improper integrals. Use first the definition with the limit.
Remark
In calculus, the function \(\arctan(y)\) is defined to return the unique angle \(\theta\) in the principal range \((-\pi/2, \pi/2)\) such that \(\tan(\theta) = y\) , and \(-\frac{\pi}{4}\) is that unique angle for \(y=-1\) .
Remark
Convergent $\not\Rightarrow $ absolutely Convergent
Example: \(f(x) = \frac{\sin(x)}{x}\) in \([1, \infty)\)
Since \(|f(x)| = |\frac{\sin(x)}{x}|\) in \([1, \infty)\)
Let us take a look at \({\displaystyle\int_1^{c}\frac{\sin(x)}{x}dx=\int_1^{c}\frac{\sin(x)}{x}dx}\)
\(u(x) = \frac{1}{x}\), \(u'(x) = -\frac{1}{x^2}\) and \(v'(x) = \sin(x)\), \(v(x) = -\cos(x)\)
\(\displaystyle= [-\frac{\cos(x)}{x}]_{1}^{c}- \int_{1}^{c}-\frac{\cos(x)}{x^{2}}dx\)
Now \(| \frac{\cos(x)}{x^2} | = \frac{|\cos(x)|}{x^2} \leq \frac{1}{x^2}\), then\(\displaystyle\int_{1}^{\infty}\frac{1}{x^{2}}dx < \infty \implies \int_{1}^{\infty}|\frac{\cos(x)}{x^{2}} | dx < \infty\)
Then \(\displaystyle\int_{1}^{\infty}\frac{\cos(x)}{x^{2}}dx<\infty\)
Then \(\displaystyle\lim_{c\to\infty}\int_{1}^{c}\frac{\sin(x)}{x}dx\) depends on \(\lim_{c \to \infty}[-\frac{\cos(x)}{x}]_{1}^{c}= \lim_{c \to \infty}(-\frac{\cos(c)}{c} ) - (-\frac{\cos(1)}{1})\) \(= 0 + \cos(1)\) \(= \cos(1)\)
Thus \(\displaystyle\int_{1}^{\infty}\frac{\sin(x)}{x}dx<\infty\)
Now, \(|\frac{\sin(x)}{x}| = \frac{|\sin(x)|}{x}\) \(\ge \frac{\sin^2(x)}{x}\)
Since \(\cos(2x) = \cos(x+x) = \cos^2(x) - \sin^2(x)\) \(\implies \sin^2(x) = \cos^2(x) - \cos(2x)\)
\(2\sin^2(x) = \sin^2(x) + \cos^2(x) - \cos(2x)\) \(= 1 - \cos(2x)\) \(\implies \sin^2(x) = \frac{1-\cos(2x)}{2}\)
Then \(\frac{|\sin(x)|}{x} \ge \frac{1-\cos(2x)}{2x}\) \(\forall x \in (1, \infty)\) \(\displaystyle\implies \int_{1}^{c}\frac{|\sin(x)|}{x}dx \ge \int_{1}^{c}\frac{1-\cos(2x)}{2x} dx\)
\(\displaystyle= \int_{1}^{c}\frac{1}{2x}dx - \int_{1}^{c}\frac{\cos(2x)}{2x}dx \to \infty\) as \(c \to \infty\).