3.31 Integrable Limit theorem
We begin the lecture of today with a theorem that states that given a continuous function \(f: [a, b] \rightarrow \mathbb{R}\), its integral can be computed as a mean value, that is there exists a point \(c \in [a, b]\) such that the integral is equal to \(f(c)(b - a)\).
Since \(f\) is a continuous function on a closed interval, it is bounded and there exists \(m, M \in \mathbb{R}\) such that \(m \leq f(x) \leq M \quad \forall x \in [a, b]\)
By the theorem we saw in the last lecture, this implies that
Theorem
Let \(f: [a, b] \rightarrow \mathbb{R}\) be a continuous function. Then there exists a point \(c \in [a, b]\) such that
Proof
Since \(f\) is continuous in \([a,b]\), it has a minimum and maximum, that is \(\exists y,z\in[a,b]:f(y)=m\leq f(x)\leq M=f(z)\)
By bounded function property, \(\displaystyle m(b - a) \leq \int_{a}^{b}f(x)dx \leq M(b - a)\)
Then \(\displaystyle f(y)\leq \frac{1}{b-a}\int^{b}_{a}f(x)dx\leq f(z)\). Note that \(\displaystyle{\frac{1}{b-a}\int_{a}^{b}f(x)dx}\) is a number \(\in \R\)
Then recall Intermediate Value Theorem, \(\exists c\in [a,b]:f(c)=\displaystyle{\frac{1}{b-a}\int_{a}^{b}f(x)dx}\)
Thus \({\displaystyle{\int_{a}^{b}f(x)dx}}=f(c)(b-a)\)
Example
\(f:[0,2]\to \R,f(x)=x\) is continuous and \(a=0,b=2\), then \({\displaystyle \int^{2}_{0}xdx}=\frac{2^{2}}{2}=2\)
Then \(2=f(c)(b-a)=f(c)\cdot 2\), thus \(f(c)=1\), then \(c=1\)
Next we analyze the relation between limits of sequences of functions and integration.
\(f_n(x) = \begin{cases} n & \text{if } 0 < x < \frac{1}{n} \\ 0 & \text{if } x = 0 \text{ or } \frac{1}{n} \le x \le b \end{cases}\) and \(f_{n}\xrightarrow{\text{pointwise}}f=0\) in \([a, b]\), then \(\displaystyle \int_{a}^{b} f_{n}(x) dx \xrightarrow{?}\int_{a}^{b} f(x) dx\)
\(\displaystyle\int_{0}^{1} f_{3}(x) dx = 1\), \(\displaystyle\int_{0}^{1} f_{2}(x) dx = 1\), \(\displaystyle\int_{0}^{b} f_{1}(x) dx = 1\)
But we know \(f_n(x) \to 0\) and \(\displaystyle\int_{a}^{b} f_{n}(x) dx \to 1\)
Thus pointwise cannot imply this
Theorem (Integrable Limit theorem)
Let \((f_n)_{n \in \mathbb{N}}\) be a sequence of integrable functions on an interval \([a, b]\) with \(b > a\).
If \((f_n)_{n \in \mathbb{N}}\) converges uniformly to a function \(f\) on \([a, b]\), then
Proof
Let's \(U(f)=\inf\limits_{P\in\mathcal{P}}\left\lbrace U\left(f,P\right)\right\rbrace,U( f_{n})=\inf\limits_{P\in\mathcal{P}}\left\lbrace U\left(f_{n},P\right)\right\rbrace ,L(f)=\sup\limits_{P\in\mathcal{P}}\left\lbrace L\left(f,P\right)\right\rbrace,L( f_{n})=\sup\limits_{P\in\mathcal{P}}\left\lbrace L\left(f_{n},P\right)\right\rbrace\)
We want to show \(U(f)=L(f)\) and we know \(U(f_n)=L(f_n)\) since \(f_n\) is integrable
Also, \(f_n\xrightarrow {u}f\), so given \(\varepsilon>0\), there exists \(N\in\mathbb{N}:|f_{n}(x)-f(x)|<\frac{\varepsilon}{2\left(b-a\right)},\forall x\in [a,b]\)
Hence $-\frac{\varepsilon}{2\left(b-a\right)}<f\left(x\right)-f_{n}\left(x\right)<\frac{\varepsilon}{2\left(b-a\right)},\forall x\in[a,b] $
Then \(f_{n}(x)-\frac{\varepsilon}{2\left(b-a\right)}<f\left(x\right)<f_{n}\left(x\right )+\frac{\varepsilon}{2\left(b-a\right)},\forall x\in[a,b]\)
Given a partition \(P=(x_{0}=a,x_{1},...,x_{n}=b)\), we have that \(f_{n}(x)-\frac{\varepsilon}{2\left(b-a\right)}<f\left(x\right)<f_{n}\left(x\right )+\frac{\varepsilon}{2\left(b-a\right)},\forall x\in[x_{i-1},x_{i}]\)
Then \(\inf\limits_{x\in[x_{i-1},x_{i}]}\left\lbrace f_{n}\left(x\right)-\frac{\varepsilon}{2\left(b-a\right)} \right\rbrace\leq\inf\limits_{x\in[x_{i-1},x_{i}]}\left\lbrace f\left(x\right)\right \rbrace\leq\inf\limits_{x\in[x_{i-1},x_{i}]}\left\lbrace f_{n}\left(x\right)+\frac{\varepsilon}{2\left(b-a\right)} \right\rbrace\)
Then \(\inf\left\lbrace f_{n}\left(x\right):x\in[x_{i-1},x_{i}]\right\rbrace-\frac{\varepsilon}{2\left(b-a\right)} \leq\inf\left\lbrace f\left(x\right):x\in[x_{i-1},x_{i}]\right\rbrace\leq\inf\left \lbrace f_{n}\left(x\right):x\in[x_{i-1},x_{i}]\right\rbrace+\frac{\varepsilon}{2\left(b-a\right)}\)
Then \(m_{i}^{(n)}-\frac{\varepsilon}{2\left(b-a\right)}\leq m_{i}\leq m_{i}^{\left(n\right)} +\frac{\varepsilon}{2\left(b-a\right)},\forall i\)
Then \(\sum_{i=1}^{n}\left(m_{i}^{\left(n\right)}-\frac{\varepsilon}{2\left(b-a\right)} \right)\left(x_{i}-x_{i-1}\right)\leq\sum_{i=1}^{n}m_{i}\left(x_{i}-x_{i-1}\right )\leq\sum_{i=1}^{n}\left(m_{i}^{\left(n\right)}+\frac{\varepsilon}{2\left(b-a\right)} \right)\left(x_{i}-x_{i-1}\right)\)
Then \(\sum_{i=1}^{n}m_{i}^{\left(n\right)}\left(x_{i}-x_{i-1}\right)-\frac{\varepsilon}{2\left(b-a\right)} \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)\leq L\left(f,P\right)\leq\sum_{i=1}^{n}m _{i}^{\left(n\right)}\left(x_{i}-x_{i-1}\right)+\frac{\varepsilon}{2\left(b-a\right)} \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)\)
Then \(L(f_{n},P)-\frac{\varepsilon}{2}\leq L\left(f,P\right)\leq L\left(f_{n},P\right) +\frac{\varepsilon}{2}\)
Then \(\sup\limits_{P\in\mathcal{P}}\left\lbrace L(f_{n},P)-\frac{\varepsilon}{2}\right \rbrace\leq\sup\limits_{P\in\mathcal{P}}\left\lbrace L\left(f,P\right)\right\rbrace \leq\sup\limits_{P\in\mathcal{P}}\left\lbrace L\left(f_{n},P\right)+\frac{\varepsilon}{2} \right\rbrace\)
Then \(\sup\limits_{P\in\mathcal{P}}\left\lbrace L(f_{n},P)\right\rbrace-\frac{\varepsilon}{2} \leq\sup\limits_{P\in\mathcal{P}}\left\lbrace L\left(f,P\right)\right\rbrace\leq\sup \limits_{P\in\mathcal{P}}\left\lbrace L\left(f_{n},P\right)\right\rbrace+\frac{\varepsilon}{2}\)
Then \(L(f_{n})-\frac{\varepsilon}{2}\leq L\left(f\right)\leq L\left(f_{n}\right)+\frac{\varepsilon}{2}\), thus \(|L(f)-L(f_{n})|\leq\frac{\varepsilon}{2}\)
Similarly, \(|U(f)-U(f_{n})|\leq\frac{\varepsilon}{2}\) (*)
Thus \(|U(f)-L(f)|\leq|U(f)-U(f_{n})|+|U(f_{n})-L(f)|=|U(f)-U(f_{n})|+|L(f_{n})-L(f)|\leq \varepsilon\)
Thus \(U(f)=L(f)\) and \(f\) is integrable
Thus \(\displaystyle \int^b_af=U(f)=L(f)\), also from (*) we have \(\lim_{n\to\infty}U(f_n)=U(f)\)
Thus \(U(f_n)=\displaystyle \int^b_af_n\to \int ^b_af\)
Remark
\(\sum\limits_{n=0}^{\infty}a_{n}x^{n}= f(x)\) on \((-R, R)\)
\(\Rightarrow\sum\limits_{n=0}^{N}a_{n}x^{n}\xrightarrow{u}f(x)\) on \([a,b] \subseteq (-R, R)\)
\(\displaystyle\Rightarrow f(x) = \sum_{n=0}^{\infty}a_{n} x^{n}\) is integrable on \([a,b]\) and \(\displaystyle\lim_{N \to \infty}\sum_{n=0}^{N}a_{n}\int_{a}^{b}x^{n}dx = \int_{a} ^{b}f(x) dx\)
Thus we have \({\displaystyle\sum_{n=0}^{\infty}a_{n}\int_{a}^{b}x^{n}dx=\int_{a}^{b}\sum\limits_{n=0}^{\infty}a_{n}x^{n}dx}\)
Example
-
\(f(x) = \frac{1}{1-x}= \sum\limits_{n=0}^{\infty}x^{n}\) in \((-1, 1)\)
If \([a, b] \subset (-1, 1)\), we compute \({\displaystyle\int_{a}^{b}}\frac{1}{1-x}dx\) using the limit of \(\displaystyle\int_{a}^{b} (\sum_{n=0}^{\infty}x^{n}) dx = \sum_{n=0}^{\infty}\int_{a}^{b} x^{n} dx\), How do we compute this?
For \([0,t]\), \(0 < t < 1\)
\(\displaystyle\int_{0}^{t}\frac{1}{1-x}dx = \sum_{n=0}^{\infty}\int_{0}^{t}x^{n}d x = \sum_{n=0}^{\infty}\frac{t^{n+1}}{n+1}= \sum_{n=1}^{\infty}\frac{t^{n}}{n}= - \ln(1-t)\)
-
\(f(x) = e^x = \exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}\) in \(\mathbb{R}\)
In \([a, b] \subset \mathbb{R}\) we have \({\displaystyle\int_{a}^{b}\left(\sum_{n=0}^{N}\frac{x^{n}}{n!}\right)dx\rightarrow\int_{a}^{b}e^{x}dx}\)
For \([0, t] \subset \mathbb{R}\), \(\displaystyle\int_{0}^{t}(\sum_{n=0}^{N}\frac{x^{n}}{n!}) dx = \sum_{n=0}^{N}(\frac{1}{n!} \int_{0}^{t}x^{n}dx) = \sum_{n=0}^{N}\frac{1}{n!}\frac{t^{n+1}}{n+1}= \sum_{n=0}^{N} \frac{t^{n+1}}{(n+1)!}\)
\(\displaystyle= \sum_{n=0}^{N}\frac{t^{n}}{n!}- 1 \xrightarrow{N \to \infty}e^{t} - 1 \Rightarrow \int_{0}^{t}e^{x}dx = e^{t}- 1\)
Definition
Let \(f: [a, b] \rightarrow \mathbb{R}\) be an integrable function. For any \(a \leq x \leq b\), we define the function \(G: [a, b] \rightarrow \mathbb{R}\) by \(\displaystyle G(x) = \int_{a}^{x}f(t)dt \quad \forall a \leq x \leq b\)
In particular, we have that \(\displaystyle G(a)=\int_{a}^{a}f(t)dt=0,G(b)=\int_{a}^{b}f(t)dt\)
Theorem
Let \(f: [a, b] \rightarrow \mathbb{R}\) be an integrable function and define \(G: [a, b] \rightarrow \mathbb{R}\) as above. Then \(G\) is continuous on \([a, b]\).
Proof
To prove \(G\) is continuous, NTP: \(\lim_{h\to 0} G(c+h)=G(c)\)
Let's assume first that \(h>0\), then \(a<c<c+h<b\)
\(G(c+h)=\displaystyle\int_{a}^{c+h}f(t)dt=\int_{a}^{c}f(t)dt+\int_{c}^{c+h}f(t) dt\) and \(G(c)=\displaystyle \int^c_af(t)dt\)
So \(|G(c+h)-G(c)|={\displaystyle\left|\int_{c}^{c+h}f\left(t\right)dt\right|}\)
Since \(f\) is integrable, \(f\) is bounded(this is because the definition of integrable is started from closed interval), that is \(\exists M>0,M\in \R\) such that \(|f(x)|<M\)
From \(|G(c+h)-G(c)|<\displaystyle \int_{c}^{c+h}Mdt=M(c+h-c)=Mh\)
When \(h\to0\), \(|G(c+h)-G(c)|\to 0\)
Exercise, do the proof of \(h<0\)
Remark
As we have seen in the examples above, there is a closed relation between the integral of a function and the values of a primitive on the extremal points of the interval.
This is a general fact given by the following theorem, which will help us to compute integrals using primitives.