1. (20 points)

Compute the derivative of the following functions:

- (a) $F(x) = \int_0^{\sqrt{x}} (3t^2 4t + 1) dt.$
- (b) $F(x) = \left(\int_0^x (6t^2 1) dt\right)^2$.
- (c) $F(x) = \int_{x^2}^0 \sin(\cos t) dt.$

2. (20 points)

Find the Taylor series at 0 of the function

$$F(x) = \int_0^x e^{-t^2} dt$$

3. (30 points)

Let f be a continuous function on [a, b] and $\phi : [\alpha, \beta] \longrightarrow \mathbb{R}$ be continuously differentiable such that $\phi(\alpha) = a$ and $\phi(\beta) = b$. Show that

$$\int_{a}^{b} f(x) \, dx = \int_{\alpha}^{\beta} f(\phi(t)) \phi'(t) \, dt.$$

4. (30 points)

Determine the area of the region enclosed by:

- (a) $y = \sin(x), y = \cos(x), x = \frac{\pi}{2}$ and the y-axis.
- (b) $x = -y^2 + 10$ and $x = (y 2)^2$.