Skip to content

Homework 1

SHI YUE 999027873

  1. Let \(g_n(x) = \frac{nx + \sin(nx)}{2n}\). Find the pointwise limit of \(g_n\) on \(\mathbb{R}\). Is the convergence uniform on \([-10,10]\)? Is the convergence uniform on \(\mathbb{R}\)?

    Answer

    1. Since \(\lim_{n\to\infty} g_n(x) = \lim_{n\to\infty} \frac{nx + \sin(nx)}{2n} = \lim_{n\to\infty} \frac{x + \sin(nx)/n}{2} = \frac{x}{2},\) then the pointwise limit of \(g_n(x)\) on \(\mathbb{R}\) is \(\frac{x}{2}\).
    2. To check the uniform convergence, let's use the definition: \(\forall\varepsilon>0,\exists N\in\mathbb{N},\forall n\geq N:\left|g_{n}(x)-\frac{x}{2} \right|<\varepsilon\)

      Consider \(\left| g_n(x) - \frac{x}{2} \right| = \left| \frac{nx + \sin(nx)}{2n} - \frac{x}{2} \right| = \left| \frac{nx + \sin(nx) - nx}{2n} \right| = \left| \frac{\sin(nx)}{2n} \right| \leq \frac{1}{2n}\leq \frac{1}{2N}\), then we should take \(N = \frac{1}{2\varepsilon}\).

      Thus, we get $\left|g_{n}(x)-\frac{x}{2}\right|\leq\frac{1}{2\frac{1}{2\varepsilon}}=\varepsilon $ as desired

      Therefore, \(g_n\) is uniformly convergent on \([-10,10]\) and \(\mathbb{R}\).

  2. For each \(n \in \mathbb{N}\), define \(f_n\) on \(\mathbb{R}\) by \(f_n(x) = \begin{cases} 1 & \text{if } |x| \geq \frac{1}{n} \\ n|x| & \text{if } |x| < \frac{1}{n}. \end{cases}\)

    Find the pointwise limit of \((f_n)\) on \(\mathbb{R}\) and decide whether or not the convergence is uniform.

    Compute \(\lim_{n\to\infty}f_{n}\left(x\right)=\lim_{n\to\infty} \begin{cases} 1 & \text{if }|x|\geq\frac{1}{n} \\ n|x| & \text{if }|x|<\frac{1}{n} \end{cases}= \begin{cases} 1 & \text{if }\left|x\right|>0 \\ 0 & \text{if }\left|x\right|\leq0 \end{cases}= \begin{cases} 1 & \text{if }x\neq0 \\ 0 & \text{if }x=0 \end{cases}\)

    Thus the pointwise limit is \(f(x)= \begin{cases} 1 & \text{if }x\neq0 \\ 0 & \text{if }x=0 \end{cases}\)

    Then by continuous limit theorem, \(f_n\) is not uniform convergent since if \(f_n\) is uniform convergent and we know \(f_n(x)\) is continuous, then \(f\) must be continuous which will be a contradiction

  3. Assume \((f_n)\) and \((g_n)\) are uniformly convergent sequences of functions.

    1. Show that \((f_n + g_n)\) is a uniformly convergent sequence of functions.

      We know \(f_n\) and \(g_n\) are uniformly convergent, then we have

      1. \(\forall\varepsilon_{1}=\frac{\varepsilon}{2}>0,\exists N_{1}\in\mathbb{N},\forall n\geq N_{1}:|f_{n}(x)-f(x)|<\varepsilon_{1}=\frac{\varepsilon}{2},\forall x\in A\)
      2. \(\forall\varepsilon_{2}=\frac{\varepsilon}{2}>0,\exists N_{2}\in\mathbb{N},\forall n\geq N_{2}:|g_{n}(x)-g(x)|<\varepsilon_{2}=\frac{\varepsilon}{2},\forall x\in A\)

      Then consider \(|f_n(x)+g_n(x)-(f(x)+g(x))|=|(f_n(x)-f(x))+(g_n(x)-g(x))|\)

      \(\leq|f_{n}(x)-f(x)|+|g_{n}(x)-g(x)|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}= \varepsilon\)

      Thus if we take \(\forall\varepsilon>0,\exists N=\max\left(N_{1},N_{2}\right),\forall n\geq N:|f_{n} (x)+g_{n}(x)-(f(x)+g(x))|<\varepsilon,\forall x\in A\)

      Thus \((f_n + g_n)\) is a uniformly convergent sequence of functions. 2. Give an example to show that the product \((f_n g_n)\) may not converge uniformly.

      Assume \(f_{n}(x)=\frac{1}{n}\) and \(g(x)=x\) is uniform convergent\, but\(f_{n}(x)g_{n}(x)=\frac{x}{n}\) is not uniform convergent 3. Prove that if there exists an \(M > 0\) such that \(|f_n| \leq M\) and \(|g_n| \leq M\) for all \(n \in \mathbb{N}\), then \((f_n g_n)\) does converge uniformly.

      We know \(f_n\) and \(g_n\) are uniformly convergent, then we have

      1. \(\forall\varepsilon_{1}=\frac{\varepsilon}{2}>0,\exists N_{1}\in\mathbb{N},\forall n\geq N_{1}:|f_{n}(x)-f(x)|<\varepsilon_{1}=\frac{\varepsilon}{2\left(\varepsilon_{2}+M\right)} ,\forall x\in A\)
      2. \(\forall\varepsilon_{2}=\frac{\varepsilon}{2M}>0,\exists N_{2}\in\mathbb{N},\forall n\geq N_{2}:|g_{n}(x)-g(x)|<\varepsilon_{2}=\frac{\varepsilon}{2M},\forall x\in A\)

      Then consider \(\left|f_{n}\left(x\right)g_{n}\left(x\right)-f\left(x\right)g\left(x\right)\right |=|f_{n}(x)g_{n}(x)-f_{n}\left(x)g\left(x\right)+f_{n}\left(x\right)g\left(x\right )-f\left(x\right)g\left(x\right)|\leq|f_{n}(x\right)(g_{n}\left(x\right)-g\left(x ))\left|+\right|g\left(x\right)(f_{n}(x\right)-f(x))|\)

      \(\leq\left|f_{n}\left(x\right)\right|\left|g_{n}\left(x\right)-g\left(x\right)\right |+\left|g\left(x\right)\right|\left|f_{n}\left(x\right)-f\left(x\right)\right|\) and since \(|f_n| \leq M\) and \(|g_n| \leq M\)

      Since we know (ii), then \(|g(x)|\leq\varepsilon_{2}+|g_{n}(x)|\leq\varepsilon_{2}+M\), thus it is bounded

      Thus if we take \(\forall\varepsilon>0,\exists N=\max\left(N_{1},N_{2}\right),\forall n\geq N:|f_{n} (x)g_{n}(x)-f\left(x\right)g\left(x\right)|\leq\varepsilon,\forall x\in A\)

      Thus \((f_n g_n)\) is a uniformly convergent sequence of functions.

  4. Consider the sequence of functions defined by \(g_n(x) = \frac{x^n}{n}\)

    1. Show that \((g_n)\) converges uniformly on \([0, 1]\) and find \(g = \lim g_n\). Show that \(g\) is differentiable and compute \(g'(x)\) for all \(x \in [0, 1]\).

      Since \(\lim_{n\to\infty}\frac{x^{n}}{n}=0\) on \([0,1]\)​, then let's check uniform convergence

      Consider \(|\frac{x^{n}}{n}|\leq\left|\frac{1}{n}\right|\), thus \(\forall\varepsilon>0,\exists\frac{1}{\varepsilon}=N\in\mathbb{N},\forall n\geq N :\left|\frac{x^{n}}{n}-0\right|\leq|\frac{1}{n}|\leq|\frac{1}{N}|<\varepsilon\)

      Thus this is uniform convergence and \(g(x)=0\)


      NTP: \(\lim_{h\to0}\frac{g\left(x+h\right)-g\left(x\right)}{h}\) exists.

      Since \(\lim_{h\to0}\frac{g\left(x+h\right)-g\left(x\right)}{h}=\lim_{h\to0}\frac{0-0}{h} =0\) exists, thus \(g\) is differentiable


      \(g'(x)=0\) as above 2. Show that \((g'_n)\) converges on \([0, 1]\). Is the convergence uniform? Set \(h = \lim g'_n\) and compare \(h\) and \(g'\). Are they the same?

      \(g_{n}^{\prime}(x)=\left(\frac{x^{n}}{n}\right)^{\prime}=\frac{nx^{n-1}}{n}=x^{n-1}\)

      Since \(\lim_{n\to\infty}x^{n-1}=0\) on \([0,1]\)​, then let's check uniform convergence

      Consider \(|x^{n-1}|\leq\left|1^{n-1}\right|=1\), thus suppose it's uniform convergent, then

      \(\forall\varepsilon>0,\exists N\in\mathbb{N},\forall n\geq N:\left|x^{n-1}\right| \leq1<\varepsilon\) which is a contradiction since \(\varepsilon\) cannot be any

      Thus this is not uniform convergence


      \(h=\lim g_{n}^{\prime}= \begin{cases} 1\quad\text{if }x=1 \\ 0\quad\text{if }x\in[0,1) \end{cases}\), thus they are not same