Skip to content

3.10 Counting maps

Let \(X\) be the set of balls and \(Y\) be the set of baskets

\(f:X\to Y\) determine a way of distributing balls into the baskets

The cardinality of function

Let \(X,Y\) be two finite sets, then \(|\{f:X\to Y\}|=|Y|^{|X|}\). Notation: \(Y^X=\{f:X\to Y\}\)

Proof

Let \(|Y|=y\) and \(|X|=x\). Then \(y^x=|\underbrace{(Y\times...\times Y)}_{x \text{ times}}|\). Assume \(X=\{a_1,...,a_x\}\).

Given \((f(a_{1}),...,f(a_{x}))\in Y^{X}\), then \(f:X\to Y\) produce \((f(a_1),...,f(a_x))\in \underbrace {Y\times ...\times Y}_{x\text{ times}}\)

Given \((y_{1},...,y_{x})\in\underbrace{Y\times...\times Y}_{x\text{ times}}\), thus define \(f:X\to Y\) by \(a_1\mapsto y_i\), then \((f(a_{1}),...,f(a_{x}))\in Y^{X}\)

Thus we have \(\varphi:Y^{X}\to Y\times...\times Y\) and \(\psi:Y\times...\times Y\to Y^{X}\), then \(\varphi\circ \psi=Id\) and \(\psi\circ\varphi=Id\)

Thus \(Y\times...\times Y\) and \(Y^{X}\) are in bijections. Then we can use multiplication principle

Recall: the same problem arises when counting words composed of letters of a fixed alphabet.

The cardinality of subsets(Important particular case)

If \(Y=\{0,1\}\), for any finite \(X\) we have \(|\{f:X\to Y\}|=2^{|X|}\)

Every function \(f:X\to \{0,1\}\) defines a subset of \(X\)

Given \(f:X\to \{0,1\}\) define \(A_f=f^{-1}(\{1\})=\{x\in X:f(x)=1\}\subseteq X\)

Given \(A\subseteq X\), we define \(f_A:X\to\{0,1\}\) where \(\begin{cases} x\mapsto0,x\notin A \\ x\mapsto1,x\in A \end{cases}\)

We have just proven \(|\{A\subseteq X\}|=2^{|X|}\)

Translation to the language of balls and baskets.

Baskets are numbered.

Balls are the same, their number is not fixed, and there is at most one ball per basket.image

The cardinality of injective function

The number of injective functions from \(X\) to \(Y\): \(|\{f : X \to Y \mid f \text{ is injective} \}|\) where \(f\) is injective \((f(x) = f(y) \implies x = y)\)

Baskets are labeled. Balls are also labeled. The number of balls is fixed. At most one ball per basket.

Proposition:

Let X and Y be two finite sets. Then \(|\{f : X \to Y \mid f \text{ is injective} \}| = \frac{(|Y|)!}{(|Y| - |X|)!}\)

Definition of \(n!\): set \(0!=1\) and define \((n+1)!=(n+1)n!\)

Proof

\(X=\{a_1,...,a_x\}\)

There are \(|Y|\) possible choices for \(f(a_1)=y_1\)

There are \(|Y|-1\) possible choices for \(f(a_2)=y_2\)

....

There are \(|Y|-\left|X\right|+1\) possible choices for \(f(a_{x})=y_{x}\)

We conclude that \(|\{f:X\to Y\mid f\text{ is injective}\}|=\left|Y\right|\left(\left|Y\right|-1\right )\ldots\left(\left|Y\right|-\left|X\right|+1\right)=\frac{(|Y|)!}{(|Y|-|X|)!}\)

If \(|X|>|Y|\), then \(|\{f:X\to Y\mid f\text{ is injective}\}|=0\)

It justifies \((-n)!=\infty,\forall n\in\N\)

A piece of notation

Let \(a\) be a number \(n\) is a natural number.

Set \((a)_n =\begin{cases} 1, & n = 0 \\a(a-1) \dots (a-n+1), & n \geq 1\end{cases}\)
This is called the "falling factorial" or the "Pochhammer symbol" .

\(\left|\{f:X\to Y\mid f\text{ is injective}\}\right|=\left(\left|Y\right|\right)_{\left|X\right|}\) and \(\left|\{f:\emptyset\to Y\mid f\text{ is injective}\}\right|=1.\)

Important Particular Case

\(\# Y = \# X \quad (\text{or } X = Y).\)

If \(f: X \to Y\) is injective, then is \(f: X \to Y\) bijective?

In this case, we have:

\(\# \{ f: X \to Y \} = (\# Y)! = (\# X)!\)image


Binomial coefficients

Baskets are different. Balls are identical, and their number is fixed. No more than 1 ball per a basket.image

We want to count: \(|\{A\subseteq X:|A|=k\}|\)

Inductive way

Let \(|X|=n\in \N\cup \{0\}\) and denote \(\left|\left\lbrace A\subseteq X:|X|=n,|A|=k\right\rbrace\right|=\binom{n}{k}\) this is binomial coefficients

Obvious remarks: \(\binom00=1\), then \(\binom{n}{0}=\binom{n}{n}=1,\forall n\in\mathbb{N}\) and \(\binom{n}{k}=0\) if either \(k<0\) or \(k>n\)

Proposition

\(\forall n\geq 1\) and any \(k=1,...,n-1\) we have \(\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}\)

Proof

Consider \(X=\{a_1,...,a_n\}\), we need to count all possible \(k\)-element subsets of \(X\)

image

image

Proposition

\(\binom{n}{k}=\frac{n!}{k!\left(n-k\right)!}=\frac{\left(n\right)_{k}}{k!}\)

Proof

\((n)_{k}=\left\lbrace f:X\to Y:f\text{ is injective}\right\rbrace\) and \(|Y|=n,|X|=k\)image

Let \(\varphi:\left\lbrace f:X\to Y:f\text{ is injective}\right\rbrace\to\left\lbrace A\subseteq Y\right\rbrace\) where \(f\mapsto Imf\)

Every element \(A\subset Y\) has the same number \(|X|!=k!\), preimages under this map

Then use division principle, \(\binom{n}{k}=\frac{\left(n\right)_{k}}{k!}=\frac{n!}{k!\left(n-k\right)!}\)


Exercise

\(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}\) holds for any value of \(n\), not necessarily a natural number.

Proposition

Let \(n\in\N\), then \(\sum_{k=0}^{n}\binom{n}{k}=2^{n}\)

Proof

Right hand is \(\left|\left\lbrace A\subseteq X:|X|=n,A\text{ is not fixed}\right\rbrace\right|\)

Left hand is \(\sum_{k=0}^{n}\left|\lbrace A\subseteq X:|X|=n,|A|\text{ is exactly k}\rbrace\right|\), then addition principle asserts the equality