- **1.** Let V be an n-dimensional vector space over a field K. Which is the characteristic polynomial of the identity operator on V? Which is the characteristic polynomial of the zero operator? Which are their minimal polynomials?
- 2. (a) Find the characteristic polynomial, eigenvalues and eigenvectors of the following matrices, considering separately the case in which the coefficients are in \mathbb{R} and in \mathbb{C}

(i) $\begin{pmatrix} 1 & 3 \\ -3 & -1 \end{pmatrix}$.	$(vi) \begin{pmatrix} a & 1\\ 1 & a\\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1\\1\\a \end{pmatrix}$.
(ii) $\begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix}$.	$(\text{vii}) \begin{pmatrix} 1 & 0 \\ a & 1 \\ 0 & a \end{pmatrix}$	
(iii) $\begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$. (i) $\begin{pmatrix} 0 & 2 & 1 \\ -a & 0 \end{pmatrix}$	$(\text{viii}) \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$	
$ (iv) \begin{pmatrix} 0 & 2 & 1 \\ -2 & 0 & 3 \\ -1 & -3 & 0 \end{pmatrix}. $	$(ix) \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$	
$ (\mathbf{v}) \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}. $	$\begin{pmatrix} \\ 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$

In all cases, $a \in \mathbb{K}$ ($\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$ respectively).

- (b) Interpret each of the previous matrices as the matrix of a linear operator $T : \mathbb{K}^n \to \mathbb{K}^n$, represented in the standard ordered basis of \mathbb{K}^n ($\mathbb{K} = \mathbb{R}$ or \mathbb{C} respectively). Find, if it is possible, a basis \mathcal{B} such that $[T]_{\mathcal{B}}$ is diagonal, and the change of bases matrix.
- **3.** Determine which matrices of the form $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, $a, b \in \mathbb{K}$, $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ are diagonalizable.
- **4.** Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by

$$T(x, y, z) = (x, x - y + z, -3x - 2z)$$

(a) Find a basis \mathcal{B} for \mathbb{R}^3 such that $|T|_{\mathcal{B}}$ is diagonal.

(b) Find
$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ -3 & 0 & -2 \end{pmatrix}^n$$
, $\forall n \in \mathbb{N}$.

- 5. (a) Let $A \in \mathcal{M}_2(\mathbb{C})$ with real entries and such that $\begin{pmatrix} 1+i\\ 2-i \end{pmatrix}$ is an eigenvector of A of eigenvalue 1+3i. Show that A is diagonalizable, find A, and find a basis of eigenvectors.
 - (b) Let $A \in \mathcal{M}_2(\mathbb{R})$ be such that $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ is an eigenvector of A of eigenvalue $\sqrt{2}$, and such that the characteristic polynomial has rational coefficients, i.e., $\chi_A(t) \in \mathbb{Q}[t]$. Is A diagonalizable? How many matrices satisfy these conditions?
- **6.** Let A and B be $n \times n$ matrices over the field K. Prove that if (I AB) is invertible, then I BA is invertible and

$$(I - BA)^{-1} = I + B(I - AB)^{-1}A$$

- 7. Use the result of Exercise 6 to prove that, if A and B are $n \times n$ matrices over the field K, then AB and BA have precisely the same characteristic values.
- 8. Let A be a $n \times n$ matrix over the field K. Show that A and A^t have the same characteristic values. Show with an example that this is not true for characteristic vectors.
- **9.** Let A be a diagonalizable $n \times n$ matrix over a field K. Let $\lambda_1, \dots, \lambda_n$ be the roots of its characteristic polynomial counted with multiplicity. Show that $\operatorname{tr}(A) = \sum \lambda_i$, $\det(A) = \prod \lambda_i$
- 10. (a) Let A be a 3×3 real matrix such that tr(A) = -4. Find the eigenvalues of A knowing that the eigenvalues of $A^2 + 2A$ are -1, 3, 8.
 - (b) Let A be a 4×4 real matrix such that det(A) = 6, and such that 1, -2 are eigenvalues of A, and -4 is an eigenvalue of A 3I. Find all the eigenvalues of A.
- **11.** Let a, b and c be elements of a field \mathbb{K} , and let A be the following 3×3 matrix over \mathbb{K} :

$$A = \begin{pmatrix} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{pmatrix}$$

.

Show that the characteristic polynomial of A is $x^3 - ax^2 - bx - c$ and that this is also its minimal polynomial.

12. Let A be the 4×4 real matrix

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix}.$$

Show that the characteristic polynomial of A is $x^2(x-1)^2$ and that it is also the minimal polynomial.

- **13.** Let *n* be a positive integer, and let *V* be the space of polynomials over \mathbb{R} spanned by $\{1, x, x^2, ..., x^n\}$. Let *D* be the differentiation operator on *V*. Which is the minimal polynomial for *D*?
- 14. Use the Hamilton-Cayley Theorem:

(a) Find
$$\frac{1}{2}A^4 + A^3 - 6A^2 - 10A + 8I_2$$
 for $A = \begin{pmatrix} -3 & 1 \\ -1 & -3 \end{pmatrix}$.
(b) Find $\begin{pmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \\ 2 & 3 & -1 \end{pmatrix}^n$, $\forall n \in \mathbb{N}$.