3.13 Invariant
-
\(f\)-invariant
Example: \(f;\R^4\to \R^4\) and \([f]_{e}= \begin{pmatrix} -2 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\)
We know that \(f(e_1)=-2e_1+e_2,f(e_2)=-2e_2,f(e_3)=2e_3,f(e_4)=e_4\)
Here is the \(f\)-invariant subspace with different dimension
- \(\dim=0\), \(\{0\}\) is \(f\)-invariant
-
\(\dim =1\),
- \(\text{span} \{e_2\}\), \(\text{span} \{e_3\}\), and \(\text{span} \{e_4\}\) are \(f\)-invariant subspaces of dim 1.
- \(\text{span} \{e_1\}\) is not \(f\)-invariant. \(f(e_1) = -2e_1 + e_2 \notin \text{span} \{e_1\}\).
- \(\dim =2\), \(\text{span} \{e_1, e_2\}\), \(\text{span} \{e_3, e_4\}\), \(\text{span} \{e_2, e_3\}\), \(\text{span} \{e_2, e_4\}\).
- \(\dim =3\), \(\text{span} \{e_1, e_2, e_3\}\), \(\text{span}\{e_{1}, e_{2}, e_{4}\}\), \(\text{span} \{e_2, e_3, e_4\}\).
- \(\dim = 4\), \(V = \mathbb{R}^4\).
-
Proposition:
- \(\ker f\), \(\operatorname{Im}f\) are \(f\)-invariant.
- \(W\) is a 1-dimensional \(f\)-invariant subspace iff \(W = \operatorname{span} \{w\}\) with \(w\) an eigenvector.
- \(W, U\) \(f\)-invariant \(\Rightarrow\) \(W + U\), \(W \cap U\) are \(f\)-invariant.
Ex 2: Find all \(f\)-invariant subspaces in \(\mathbb{R}^3\) with \(f_{A}(v)=Av\) with \(A = \begin{bmatrix} 4 & -2 & 2 \\ 2 & 0 & 2 \\ -1 & 1 & 1 \end{bmatrix}\)
For \(f_A\), find an infinite family of 2-dimensional \(f\)-invariant subspaces.\(\chi_A (X) = \begin{vmatrix} X-4 & 2 & -2 \\ -2 & X & -2 \\ 1 & -1 & X-1 \end{vmatrix}\) \(= X^3 - 5X^2 + 8X - 4\) \(= (X - 1)(X - 2)^2\)
\(E_{1}=\text{Ker}(A-I)=\text{Ker}\left( \begin{bmatrix} 3 & -2 & 2 \\ 2 & -1 & 2 \\ -1 & 1 & 0 \end{bmatrix}\right)=\text{Ker}\left( \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ -1 & 1 & 0 \end{bmatrix}\right)\)
\(\begin{cases}-x + y = 0 \\y + 2z = 0\end{cases}\Rightarrow x = y = -2z\), \((x,y,z)\in\text{Ker}(A-I)\Leftrightarrow(x,y,z)=z(-2,-2,1)\)
Thus \(\text{Ker}(A - I) = \text{span} \{ (-2, -2, 1) \}\)
\(E_{2}=\text{Ker}(A-2I)=\text{Ker} \begin{bmatrix} 2 & -2 & 2 \\ 2 & -2 & 2 \\ -1 & 1 & -1 \end{bmatrix}\), then \((x, y, z) \in \text{Ker}(A - 2I) \Leftrightarrow -x + y - z = 0 \Leftrightarrow x = y - z\)\(\iff\)\((x,y,z)=y(1,1,0)+z(-1,0,1)\)
\(E_{2}=\text{span}\{(1,1,0),(-1,0,1)\}\)
\(A\text{ is diagonalizable and }A= \begin{bmatrix} -2 & 1 & -1 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{pmatrix} 1 & \placeholder{} & \placeholder{} \\ \placeholder{} & 2 & \placeholder{} \\ \placeholder{} & \placeholder{} & 2 \end{pmatrix} \begin{bmatrix} -2 & 1 & -1 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}^{-1}\)
If \(S \leq \mathbb{R}^3\) is \(f\)-invariant.
i) \(\dim S = 0 \rightarrow S = \{ 0 \}\).
ii) \(\dim S=1\rightarrow S=\text{span}\{(-2,-2,1)\}\) or \(S = \text{span} \{ (1, 1, 0) \}\) or \(S = \text{span} \{ (-1, 0, 1) \}\).
iii) \(\dim S = 3 \rightarrow S = \mathbb{R}^3\).
iv) \(\dim S = 2 \rightarrow S = \text{span}\{\underbrace{ (-2, -2, 1)}_{x'},\underbrace{ \alpha (1, 1, 0) + \beta ( -1, 0, 1)}_{u}\}\).
\(\mathbb{R}^3 = E_1 \oplus E_2\)
-
\(V\) is an \(n\)-dimensional vector space over \(\mathbb{K}\) (where \(\mathbb{K} = \mathbb{R} \text{ or } \mathbb{C}\)).
If \(f\) is a nilpotent linear operator with index \(n\).
Prove that there exists an \(f\)-invariant proper subspace that does not admit an \(f\)-invariant complement.
Definition: \(f: V \to V\) is a linear operator.
\(f\) is nilpotent with index \(K\) if \(f^{k} = 0\) and \(f^i \neq 0\) for all \(1 \leq i \leq k - 1\).
We want a subspace \(S \subsetneq V\) such that:
i) \(S\) is \(f\)-invariant.
ii) There does not exist \(T \leq V\) such that \(V = S \oplus T\).
Remark:
\(\text{Ker}\,f\subset\text{Ker}\,f^{2}\subset\text{Ker}\,f^{3}\subset\ldots\subset \text{Ker}\,f^{n-1}\subset\text{Ker}\,f^{n}=V\)
Let \(v \not\in \text{Ker} \, f^{n-1}\) and consider \(B = \{ v, f(v), f^2(v), \ldots, f^{n-1}(v) \}\).
i) \(B\) is a linearly independent set.
Consider \(x = \alpha_0 v + \alpha_1 f(v) + \alpha_2 f^2(v) + \ldots + \alpha_{n-1} f^{n-1}(v) = 0\).
\(0 = f^{n-1}(x) = \alpha_0 f^{n-1}(v) + \alpha_1 f^n(v) + \ldots + \alpha_{n-1} f^{2n-2}(v)\)
Since terms involving \(f^n(v) \ldots f^{2n-2}(v)\) are zero, we have \(= \alpha_0 f^{n-1}(v) = 0, \, \text{but } v \not\in \text{Ker} \, f^{n-1} \Rightarrow \alpha_0 = 0\)
\(\therefore \, x = \alpha_1 f(v) + \alpha_2 f^2(v) + \ldots + \alpha_{n-1} f^{n-1}(v)\)
Since \(f^{n-2}(x)=\alpha_{1}f^{n-1}(v)=0\Rightarrow\alpha_{1}=0\).
\(\ldots\)
Thus, \(\alpha_0 = \alpha_1 = \ldots = \alpha_{n-1} = 0\).
\(\therefore B\) is a linearly independent set.
\(B\) is a basis for \(V\):
\(\#(B) = n \text{ and } B \text{ is l.i.} \Rightarrow B \text{ is a basis for } V.\)
\(V \xrightarrow{f} f(v) \xrightarrow{f} f^2(v) \xrightarrow{f} \ldots \xrightarrow{f} f^{n-1}(v) \xrightarrow{f} f^n(v) \xrightarrow{f} 0\).
Define: \(S = \text{span} \{ f(v), f^2(v), \ldots, f^{n-1}(v) \}\) and \(\dim S = n - 1\)
\(f(S)=\text{span}\{f^{2}(v),f^{3}(v),\ldots,f^{n-1}(v)\}\subseteq S.\)
Hence, \(S\) is \(f\)-invariant!
ii) Does \(S\) admit an \(f\)-invariant complement?
Consider \(x \in V \setminus S\) such that \(\{f(v), f^2(v), \ldots, f^{n-1}(v), x\}\) is a basis for \(V\) (\(V = S \oplus T\)).
Let \(T = \text{span} \{ x \}\).
If \(T\) is \(f\)-invariant, then \(f(x) = \alpha x\) where \(\alpha \in \mathbb{K}\).
\(\therefore T = E_{\alpha} \quad (x \text{ is an eigenvector relative to } \alpha)\)
Since \(f\) is nilpotent, \(0 = f^n(x) = \alpha f^{n-1}(x) = \alpha^2 f^{n-2}(x) = \ldots = \alpha^n x\).
\(\Rightarrow \alpha = 0 \Rightarrow f(x) = 0 \Rightarrow x \in \text{Ker} \, f\)
Notice that: \(\dim \text{Ker} \, f = 1\).
And \(f(f^{n-1}(v)) = 0\).
\(\therefore \text{span} \{ x \} = \text{Ker} \, f = \text{span} \{ f^{n-1}(v) \}\)
Thus, \(T\) is not \(f\)-invariant.