5.26 Unitary and Normal
Example
-
Given a finite dimensional k-IPVS, \((V,\lang,\rang)\). Let \(n=\dim V\), then \(V\cong k^n\) with the standard inner product where is isomorphism of k-IPVS
Let \(B=\{v_1,...,v_n\}\) orthonormal basis of \(V\), define the map \(f:V\to k^{n}\) where \(v_i\mapsto e_i\) where \(f\) send an orthonormal basis to an orthonormal basis, so \(f\) preserves inner product, so it is an isomorphism of k-IPVS
Given \(v=\sum^n_{i=1}\lambda_iv_i\), \(f(v)=\sum^n_{i=1}\lambda_ie_i\), \(f(v)=(\lambda_1,...,\lambda_n)=[v]_B\)
-
\(M_{3}(\R)\supseteq W=\{A\in M_3(\R):A^t=-A\}\) with inner product \(\lang A,B\rang =\frac{1}{2}\text{tr}(AB^*)\)
\(\dim W=3\) since the diagonal is zero and symmetry, then we have 3 free variables
Let \(V=\R^3\) with the standard inner product. Let \(f:V\to W\) be the map defined by \(f(x_{1},x_{2},x_{3})=\begin{pmatrix} 0&-x_3&x_2\\ x_3&0&-x_1\\ -x_2&x_1&0 \end{pmatrix}\)
Prove that \(f\) preserves inner product
-
Let \(P\in Gl_{n}(\mathbb{C})\) and \(G=P^*P\), \(G\) is invertible sincce \(\det P^{*}=\det(\bar P^{t})=\det \bar P=\overline{\det P}\), then \(\det P=0\iff\det P^*=0\) with inner product \(\lang X,Y\rang_1 =Y^{*}X\)
Let \(W\) be the \(\mathbb{C}\)-IPVS such that its vector are elements of \(\mathbb{C}^{n\times 1}\) with inner product \(\lang X,Y\rang_2=Y^*GX\)
Are \((V,\lang,\rang_1)\) and \((W,\lang,\rang_2)\) isomorphic of inner product vector space? Yes, they have the same dimension
Let \(f:W\to V\) be defined by \(f(X)=PX\) where \(\lang X,Y\rang_{2}=Y^{*}GX=Y^{*}P^{*}PX=(PY)^{*}PX=\lang PX,PY\rang_{1}=\lang f(X),f(Y)\rang_1\)
-
\(V=\{f:[0,1]\to \R:f\text{ is continuous }\}=W\)
\(\displaystyle\lang f,g\rang_{V}=\int^{1}_{0}f(t)g(t)t^{2}dt,\quad\lang f,g\rang_{W}=\int^{1}_{0}f(t)g(t)dt\)
Define \(T:V\to W\) such that \(T(f(t))=t(f(t))\) where \(f:[0,1]\to \R\) is continuous.
\(T\) preserves inner products, \(\displaystyle\lang T(f(t)),T(g(t))\rang=\lang tf(t),tg(t)\rang_W=\int^1_0t\cdot f(t)\cdot t\cdot g(t)dt=\int^1_0f(t)\cdot g(t)\cdot t^2dt=\lang f(t),g(t)\rang_V\)
But \(T\) is not an isomorphism because it is not surjective
Take the constant function \(1\in W\), then \(1\notin \text{Im}T\)
This is because preserves inner product \(\Rightarrow\) injective. But we usually use dimension theorem to conclude it is surjective.
But this is finite dimension, then we cannot conclude that it is surjective
Theorem
Let \(\lang V,\lang,\rang_V)\) and \((W,\lang,\rang_W)\) be k-IPVS. Let \(f:V\to W\) be a k-linear map
\(f\) preserves inner product\(\iff\)\(||f(v)||_W=||v||_V\), \(\forall v\in V\)
Proof
\(\Rightarrow\)) We already know from this
\(\Leftarrow\)) Polarization Identities
If \(k=\R\), then \(\forall x,y\in V,\lang x,y\rang =\frac{1}{4}(||x+y||^2-||x-y||^2)\)
If \(k=\mathbb{C}\), then \(\lang x,y\rang=\frac{1}{4}(||x+y||^{2}-||x-y||^{2}-i||x+iy||^{2}+i||x-iy||^{2})\)
Definition
Let \(f:V\to W\) be an isomorphism of k-IPVS, we say that \(f\) is a unitary operator
Remark
\(\{f:V\to V:f\text{ is unitary}\}\) is closed under composition and inverse. Why sum not? Since \(f(x)+(-f(x))=0\) is not isomorphism
Proposition
Let \(U:V\to V\) be k-linear. \(U\) is unitary\(\iff\)\(\exists U^*\) and \(U^*\circ U=Id_V=U\circ U^*\)
Proof
\(\Rightarrow\)) \(\exists U^{-1}\) and \(\forall v,w\in V\) s.t. \(\lang U(v),w\rang =\lang U(v),U(U^{-1}(w))\rang\). Since \(U\) preserves inner product, then \(=\lang v,U^{-1}(w)\rang\), then \(U^*\) exists and \(U^*=U^{-1}\)
\(\Leftarrow\)) Suppose \(U^*\) exists and \(U^*=U^{-1}\). Given \(v,w\in V\), \(\lang U(v),U(w)\rang=\lang v,U^*(U(w))\rang=\lang v,U^{-1}(U(w))\rang=\lang v,w\rang\)
Example
\(V=\mathbb{C}^{n\times 1}\), \(\lang X,Y\rang =Y^*X\). Let \(A\in M_n(\mathbb{C})\), \(U:V\to V\) be defined as \(U(X)=AX\)
\(\lang U(X),U(Y)\rang=\lang AX,AY\rang=(AY)^*AX=Y^*A^*AX\), so \(U\) is unitary\(\iff\)\(Y^*A^*AX=Y^*X,\forall X,Y\in \mathbb{C}^{n\times 1}\)
\(\iff A^*A=Id\). For example \(Y=e_i,X=e_j\), then \(e_{i}^{*}A^*Ae_j=(A^*A)_{ij}\) and \(e^*_ie_j=\delta_{ij}\)
Definition
Let \(A\in M_n(\mathbb{C})\) is called unitary\(\iff A^{*}A=Id_{n}\). In particular \(A\) is unitary, then \(A\) is invertible
Proposition
Let \((V,\lang,\rang)\) be a finite dimension k-IPVS. Let \(f:V\to V\) be a k-linear map.
\(f\) is unitary\(\iff\)\(\exists B\) orthonormal basis of \(V:[f]_B\) is unitary
Proof
Let \(B\) be an orthonormal basis of \(V\), let \(A=[f]_B\), then \(A^*A=Id\)(that is \(A\) is unitary)
\(A^{*}=[f^*]_{B}\) since \(B\) is orthonormal basis. \(\iff\)\(f^{*}\circ f=Id\iff f\) is unitary
Let's look more carefully at the condition \(A\in M_n(\mathbb{C})\) is unitary
\(\delta_{ij}=(A^{*}\cdot A)_{ij}=\sum^{n}_{r=1}(A^{*})_{ir}\cdot (A)_{rj}=\sum^{n}_{r=1}\overline {(A)_{ri}}\cdot A_{rj}=\sum^{n}_{i=1}\overline{a_{ri}}\cdot a_{rj}\)
Thus \(\delta_{ij}=\lang c_{j},c_{i}\rang=c_i^*\cdot c_j\) standard inner product
Thus \(A\in M_n(\mathbb{C})\) is unitary\(\iff\) The set of columns of \(A\) is an orthonormal basis of \((C^n,\lang,\rang)\)
Remark
\(A\) is unitary, \(\det A\) ?
Since \(A^*A=Id\), then \(\det(A^{*}A)=\det(Id)=1\), and \(\det(A^*A)=\overline{\det(A)}\det(A)\), then \(|\det A|^2=1\)
Suppose \(A\in M_n(\R)\), then \(\det A=\pm 1\). If \(A\in M_n(\mathbb{C})\), then \(|\det A|=1\)
Also, if \(k=\R\), \(A^*A=Id\iff A^tA=Id\). If \(k=\mathbb{C}\), \(A^{*}A=Id\iff\bar A^{t}\cdot A=Id\)
We say that \(A\) is orthogonal
Example
\(A= \begin{pmatrix} \cos a & \sin a \\ -\sin a & \cos a \end{pmatrix}\) where \(a\in [0,2\pi)\). \(A\) is orthogonal \(\forall a\in [0,2\pi)\)
\(A^{t}A= \begin{pmatrix} \cos a & -\sin a \\ \sin a & \cos a \end{pmatrix}\cdot \begin{pmatrix} \cos a & \sin a \\ -\sin a & \cos a \end{pmatrix}= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)
Let \(f:\R^2\to \R^2\), \(f(X)=AX\), we will say that \(f\) is a rotation
Remark
Let \((V,\lang,\rang)\) k-IPVS, \(\dim V=n\). Let \(B=\{v_1,...,v_n\}\) and \(B'=\{v_1',...,v_n'\}\) be orthonormal basis of \(V\)
Given \(v\in V\) we have \([v]_B\) and \([v]_{B'}\), let \([v]_{B'}=C_{BB'}[v]_{B}\)
Exercise: Prove that \(C_{BB'}=(P_{B}^{B'})^{-1}\) is unitary, write it and column orthonormal
\(A\) is unitary\(\iff\)\(A\cdot A^{*}=Id=A^*\cdot A\). In particular, \(AA^{*}=A^{*}A\)
\(f\) is unitary\(\iff\)\(f\circ f^*=Id=f^*\circ f\). ...
Problem: \(f:V\to V\) and \(V\) finite dimension k-IPVS, when is \(f\) is diagonalize?
Suppose \(f\) is diagonalizable and \(f^{*}\circ f=f\circ f^*\), then \(\exists\) a orthonormal basis \(B:[f]_{B}= \begin{pmatrix} \lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n} \end{pmatrix}\) and \([f^{*}]_{B}=\overline{[f]}_{B}^{t}= \begin{pmatrix} \bar\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \bar\lambda_{n} \end{pmatrix}\)
We will prove that \(f^{*}\circ f=f\circ f^*\), then \(f\) and \(f^*\) will be diagonalizable in an orthonormal basis for \(k=\mathbb{C}\)
Definition
\((V,\lang,\rang)\) k-IPVS, \(f:V\to V\) is normal\(\iff f^*\circ f=f\circ f^*\) be k-linear
Examples: \(Id_V,0:V\to V,\lambda\cdot Id_V,\forall \lambda\in k\)
Let \(f:V\to V\), given \(B\) orthonormal basis \(\{v_1,...,v_n\}\) and \(f(v_{i})= \lambda_{i}v_i\), then \([f]_{B}= \begin{pmatrix} \lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n} \end{pmatrix}\) and \([f^{*}]_{B}=\overline{[f]}_{B}^{t}= \begin{pmatrix} \bar\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \bar\lambda_{n} \end{pmatrix}\)
Self-adjoint maps (\(f^{*} =f\))
Exercise
Find \(g, f: \mathbb{C}^2 \longrightarrow \mathbb{C}^2\) such that \(f\) and \(g\) are normal but \(f+g\) is not normal.
Remark
Unitary is says \(f\) commutes with \(f^*\) and equals to \(Id\)
But normal is just that \(f\) commutes with \(f^*\)