4.28 Jordan basis and form
Let \(A\in M_n(k)\) and \(J_A\) is Jordan form of \(A\), \(\exists P\in Gln(k)\) such that \(A=P\cdot J_A\cdot P^{-1}\) where \(J_A=D+N\)
For example if
\(A^{2}=PJ_{A}P^{-1}PJ_{A}P^{-1}=PJ_{A}^{2}P^{-1}\). In general by induction \(A^{r}=PJ_{A}^{r}P^{-1}=P\left(D+N\right)^{r}P^{-1}\)
Moreover we know \(DN=ND\), then \((D+N)^{r}\overset{\text{since }DN=ND}{=}\sum^{r}_{i=0}\binom{r}{i}D^{r-i}N^i\)
In the example, \(A^{2}=PJ_{A}^{2}P^{-1}=P(D+N)^{2}P^{-1}=P(D^2+2DN+N^2)P^{-1}\)
\(=\)
Then \(A^{3}=P(D^{3}+3D^{2}N+3DN^{2}+N^{3})P^{-1}=P(D^{3}+3D^{2}N)P^{-1}\)
Example
Let \(f:\R^6\to \R^6\) and \(\R\)-linear be such that
-
\(\ker (f-3Id)^2\subsetneq \ker (f-3Id)^3\)
-
\(\dim\ker (f-Id)^2=1\)
-
\((f-3Id)^4(f-Id)^2=0\)
Find all possible Jordan forms of \(f\)
\(\chi_{f}(x)=(x-3)^{4}(x-1)^{2}\), then \(m_{f}(x)=(x-3)^{3}(x-1)\) or \((x-3)^4(x-1)\)
Notes on board:
From 1, we get \(\left\lbrace0\right\rbrace\subsetneq\ker(f-Id)\subsetneq\ker(f-3Id)^{2}\subsetneq \ker(f-3Id)^{3}\), then \(3\) is an eigenvalue and \(m_f(x)\) is divisible by \((x-3)^3\)
From 2, we get \(\{0\}\subseteq\ker(f-Id)\subseteq \underbrace{\ker(f-Id)^2}_{ \dim =1}\), then \(\{0\}\subsetneq \ker(f-Id)\)
Then \(\dim\ker(f-Id)\geq 1\) and \(\dim\ker(f-Id)\leq 1\), then \(\dim\ker(f-Id)=1\)
Then \(2\) is an eigenvalue
From 3, \(m_f(x)\mid (x-3)^4(x-1)^2\), so the only eigenvalue is \(3\) and \(1\)
Then \(m_{f}(x)=(x-3)^{3}(x-1)\) or \((x-3)^4(x-1)\)
Then \(\chi_f(x)=(x-3)^i(x-1)^j\) where \(i\geq 3\) and \(i+j=6\) or \(\chi_{f}(x)=(x-3)^{i}(x-1)^{j}\) where \(i\geq4\) and \(i+j=6\)
Since \(\dim(\ker f-Id)=1\), we have that there is only one \(1\) in the diagonal, so \(j=1\) and this coincides with the algebraic multiplicity
Example
Given \(A\in M_5(\mathbb{C})\) such that
-
\(x^{2}-6x+9\mid m_A(x)\)
-
\(\text{rank} (A+Id)=3\)
-
\((A-3Id)^3(A+Id)^3(A-Id)=0\)
Find all possible Jordan forms of \(A\)
Solution
Since 1, then \(3\) is an eigenvalue of \(A\) and we have an elementary Jordan block eigen.3 if size \(k\times k\) with \(k\geq 2\)
Then \(m_A(x)=(x-3)^j\) where \(j\geq 2\)
Since 2, \(5=\dim\mathbb{C}^{5}=\dim\ker(A+Id)+\dim\text{Im}(A+Id)=\dim\ker(A+Id)+\text{rank} (A+Id)=3\), \(\dim\ker (A+Id)=2\)
So there are 2 elementary Jordan blocks with eigenvalue \(-1\). Then \(m_A(x)=(x-3)^j(x+1)^i\) where \(j\geq 2\) and \(i\geq 1\)
Since 3, we get that \(m_A(x)\mid (x-3)^3(x+1)^3(x-1)\), so the possible eigenvalue is \(3,-1,1\)
So \(m_A(x)=(x-3)^i(x+1)^j(x-1)^k\) where \(i\geq 2, i\geq 1,k\geq 0\)
\(\chi_{f}(x)\mid(x-3)^{3}(x+1)^{3}(x-1)\)
-
\(\chi_{f}(x)=(x-3)^{2}(x+1)^{2}(x-1)\) and \(m_f(x)=(x-3)^2(x+1)(x-1)\)
-
\(\chi_{f}(x)=(x-3)^{2}(x+1)^{3}\) and \(m_{f}(x)=(x-3)^{2}(x+1)^{2}\)
-
\(\chi_{f}(x)=(x-3)^{3}(x+1)^{2}\) and \(m_{f}(x)=(x-3)^{2}(x+1)\)
-
\(\chi_{f}(x)=(x-3)^{3}(x+1)^{2}\) and \(m_{f}(x)=(x-3)^{3}(x+1)\)
Example
\(A= \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}\), find \(J_A\) and Jordan basis
\(\chi_{A}(x)=\det \begin{pmatrix} x & -1 & 0 & 0 \\ 0 & x & -1 & 0 \\ 0 & 0 & x & -1 \\ -1 & 0 & 0 & x \end{pmatrix}=x\det \begin{pmatrix} x & -1 & 0 \\ 0 & x & -1 \\ 0 & 0 & x \end{pmatrix}+\det \begin{pmatrix} -1 & 0 & 0 \\ x & -1 & 0 \\ 0 & x & -1 \end{pmatrix}=x^{4}-1=\left(x+1\right)\left(x-1\right)\left(x+i\right)\left(x-i\right )\) which is diagonalizable
\(E_{-1}=\ker \begin{pmatrix} -1 & -1 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & -1 \\ -1 & 0 & 0 & -1 \end{pmatrix}=\ker \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}=\text{span}\{\left(-1,1,-1,1\right)\}\)
\(E_{1}=\ker \begin{pmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & -1 \end{pmatrix}=\)....
Example
\(A= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}\), find \(J_A\) and Jordan basis
\(\chi_A(x)=(x-1)^4\) and \(V_1=\lang e_1\rang\)