Skip to content

3.10 Invariant subspace

Suppose \(k\) field, \(V\) is \(k\)-vector space, \(f:V\to V\) is \(k\)-linear map

Definition

Given a subspace \(S\subseteq V\). We will say that \(S\) is \(f\)-invariant (or invariant under \(f\)) if \(f(S)\subseteq S\)

Example

  1. \(S=\{0_V\}\) is \(f\)-invariant \(\forall f\)

  2. \(\ker f,Im f\) is \(f\)-invariant \(\forall f\)

  3. If \(f=Id_{V_1}\) all subspace are \(f\)-invariant

  4. \(f:V\to V\), \(\dim_kV=m\), \(\mathcal{B}=\{v_1,...,v_m\}\) and \([f]_{\mathcal{B}}= \begin{pmatrix} a_{11} & \ldots & a_{1m} \\ & \ddots & \vdots \\ & & a_{\operatorname{\mathrm{mm}}} \end{pmatrix}\)

    \(S_1=\lang v_1\rang\), \(f(v_1)=a_{11}v_1\in S_1\) which is \(f\)-invariant

    Also \(S_j=\lang v_1,...,v_j\rang\) is \(f\)-invariant

  5. \(f=0,S\) is \(f\)-invariant \(\forall S\)

  6. \(f:k^2\to k^2\) where \(f(e_1)=e_2\) and \(f(e_2)=e_1\)

    \(\lang e_1\rang\) is not \(f\)-invariant but \(\lang e_1+e_2\rang\) is \(f\)-invariant

  7. \(f:V\to V\) is \(k\)-linear and \(g:V\to V\) is \(k\)-linear such that \(f\circ g=g\circ f\)

    Let \(W=Img,U=\ker g\), then \(W\) and \(U\) are \(f\)-invariant

    Let \(w\in W,\exists v\in V:w=g(v)\), then \(f(w)=f(g(v))=f\circ g(v)=g\circ f(v)=g(f(w))\in W\)

    Let \(v\in U=\ker g\), then \(g\left(f\left(v\right)\right)=g\circ f\left(v\right)=f\circ g\left(v\right)=0_{V} \Rightarrow f\left(v\right)\in U\)

  8. \(V=\R^2\) and \(\R\) vector space. Fix \(0\leq \alpha<2\pi\)

    \(A= \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}\), \(f_A:\R^2\to \R^2\) rotation with any \(\alpha\) to the left

    (a subspace is a line, rotate 0 or \(\pi\) is invariant since \(-v\) in it)

    Clearly, \(\{0\}\) and \(\R^2\) are \(f\)-invariant. Suppose that \(S\subseteq \R^2\) subspace of \(\dim=1\) such that \(S\) is invariant

    Then \(S=\lang v_1\rang\) \(,v_{1}\neq 0_{V}\) and \(f_A(v_1)=\lambda v_1\) for some \(\lambda\in \R\)

    Then assume \(v_{1}= \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix}\) and \(\lambda\) is an eigenvalue of \(f_A\) with eigenvector \(v_1\)

    Let's calculate \(\chi_{f_{A}}(x)=\chi_{A}\left(x\right)=\det \begin{pmatrix} x-\cos\alpha & \sin\alpha \\ -\sin\alpha & x-\cos\alpha \end{pmatrix}=x^{2}-2x\cos\alpha+1\)

    Thus the roots are \(\cos\alpha\pm\sqrt{\cos^2\alpha-1}\), since we have an eigenvalue, thus \(\alpha = 0\) or \(\pi\)

Restriction linear map

Suppose \(V\)-finite dimension, \(f:V\to V,k\)-linear. Let \(S\) be an \(f\)-invariant

Let \(\mathcal{B}_{1}=\left\lbrace v_{1},\ldots,v_{s}\right\rbrace\) be basis of \(S\), we can extend it \(\{\mathcal{B}_{1},v_{s+1},\ldots,v_{n}\}\) of \(V\)

Then \([f]_{\mathcal{B}}=\)image where \(M=[f|_{S}]_{\mathcal{B_1}}\)

Consider the restriction \(f|_S\) of \(f\) to \(S\). \(f|_s:S\to S\) is linear map.

If \(D\) is invariant, then it is upper triangular

Lemma

Let \(W\subseteq V\) be an \(f\)-invariant subspace, then \(\chi_{f|_{W}}(x)\mid\chi_{f}(x)\) and \(m_{f|_{W}}(x)\mid m_{f}(x)\)

Proof

Main idea: Consider the matrix of restriction linear map, remember definition of \(\chi_f\) is about matrix.

Let \(\mathcal{B}\) be a basis of \(V\) such thatimage

So \(\chi_{f|_{W}}(x)\mid\chi_{f}(x)\)


Main idea: Remember \(m(x)\) is a polynomial, so it can be written as \(m(x)=\sum^n_{i=0}a_ix^i\)

For all \(i\in \N\),image

Since \(m_{f}(x)=m_{[f]_\mathcal{B}}(x)\) and \(m_{[f]_\mathcal{B}}([f]_{\mathcal{B}})=0\), then \(m_{[f]_{\mathcal{B}}}(x)=\sum_{j=0}^{r}\alpha_{j}x^{j}\) and \(0=m_{[f]_\mathcal{B}}([f]_{\mathcal{B}})=\sum_{j=0}^{r}\alpha_{j}\left\lbrack f\right\rbrack _{\mathcal{B}}^{j}=\sum_{j=0}^{r}\alpha_{j}\)(image\()^j\)=image

Thus \(\sum_{j=0}^{r}\alpha_{i}M^{j}=0\), then \(m_{[f]_\mathcal{B}}([f|_W]_\mathcal{B_1})=0\) since representation of matrix

Thus by definition of \(m_{f|_W}(x)\), we get that \(m_{f|_{W}}(x)\mid m_{f}(x)\)

Example

\(f: V \to V\), \(\dim V = n\). Let \(W = \langle \text{all the eigenvectors of } f \rangle\). Assume \(W \neq \{0\}\).
Let \(c_1, \dots, c_t\) be the different eigenvalues of \(f\). Let \(B_i\) be a basis of \(V_{c_i}\) (\(c_i\) eigenspace), \(B' = B_1 \cup \dots \cup B_r\) is also basis for \(W\).

Given \(w \in W\), \(w=\sum_{j=1}^{t}\alpha_{j}v_{j}\quad\text{(eigenvectors)}\), then \(f(w)=\sum_{j=1}^{t}\alpha_{j}f(v_{j})\quad\text{(since }f(v_{j})=c_{j}v_{j}\text{)} \in W\)

So \(W\) is \(f\)-invariant.

image

\(\chi_f(x)=\chi_{f|_w}(x)\cdot P(x)\) some polynomial \(=(x-c_{1})^{m_1}\cdot\ldots\cdot(x-c_{r})^{m_{r}}\cdot P\left(x\right)\) where \(m_1+...+m_r=\dim W\) and \(m_1=\dim V_{c_1}\) .... \(m_r=\dim V_{c_r}\)

Definition

Let \(W\subseteq V\) be an \(f\)-invariant subspace, let \(v\in V\text{ is finite dimension}\), $m_f(f)(v)=0\in W $

Consider \(m_{f}(x)\in\underbrace{\left.\{p(x\right)\in k[x]:p(f)(v)\in W\}}_{S_f(v,W)}\neq \left\lbrace0 \right\rbrace\), this is a set of polynomials that send \(v\in V\to w\in W\) via \(p(x)\) evaluating on \(f\)-invariant

Remark: If \(w=\{0_V\}\), then \(S_{f}(v,\{0\})=\{p\left(x\right)\in k[x]:p(f)(v)=0\}\)

Lemma

Suppose that \(\dim_k V<\infty\), let \(f:V\to V\) be a \(k\)-linear map. Let \(W\) be an \(f\)-invariant subspace, then \(W\) is \(p(f)\)-invariant, \(\forall p(x)\in k[x]\)

Proof

Let \(p(x)=\sum_{i=0}^{t}a_{i}x^{i}\in k[x]\), then \(p(f)=\sum_{i=0}^{t}a_{i}f^{i}\). Given \(v\in W\), \(p(f)(v)=\sum_{i=0}^{t}a_{i}f^{i}\left(v\right)\)

Note that if \(W\) is \(f\)-invariant and \(v\in W\), then \(\forall i\in \N\), \(f^i(v)\in W\) by induction

Thus \(v\in p(f)(v)\)

Corollary

\(\forall v\in V,S_f(v,W)\) is closed under sums and by multiplication by any polynomial in \(k[x]\)

Proof

Suppose \(p_1(x),p_2(x)\in S_f(v,W)\), then \(p_{1}\left(x\right)=\sum_{i=0}^{t}a_{i}x^{i},p_{2}\left(x\right)=\sum_{j=0}^{t}b _{j}x^{j}\)

We know that \(p_1(f)(v)\in W\) and \(p_2(f)(v)\in W\), then \(p_1(f)(v)+p_2(f)(v)\in W\)

Then \((p_1+p_2)(f)(v)\in W\), thus \(p_1(x)+p_2(x)\in S_f(v,W)\)


Let \(p(x)\in S_f(v,W)\), that is \(p(f)(v)\in W\) and \(h(x)\in k[x]\)

Let's prove that \(h(x)\cdot p(x)\in S_f(v,W)\)

Since \((h\cdot p)(f)=h(f)\circ p(f)\), then \((h\cdot p)(f)(v)=\underbrace{h(f)(\underbrace{p(f)(v)}_{\in W})}_{\in W\text{ use lemma}}\)


Remark: we have proven that \(S_f(v,W)\) is an ideal in the ring \(k[x]\)

As we did for the definition of \(m_f(x)\), we can prove that if we take a monic polynomial \(p(x)\) of minimal degree in \(S_f(v,W)\) then it divides all other polynomials in \(S_f(v,W)\) and it is unique

Proof

Assume \(p(x)\) is unique monic polynomial of minimal degree, then \(p(f)(v)\in W\) and \(h(x)\in k[x]:h(f)(v)\in W\), we are going to prove \(p(x)\mid h(x)\)

Let's \(h(x)=p(x)q(x)+r(x),r(x)=0\text{ or }dgr(x)<dgp(x)\)\, then \(h(f)(v)=p(f)q(f)(v)+r(f)(v)\)

Then \(h(f)(v)\in W,q\left(f)\left(v\right)=v^{\prime}\in V\Rightarrow\left.p(f\right)( v^{\prime}\right)\in W\) by lemma

Thus \(r(f)(v)\in W\). Here \(r(f)(v)=0\). If not it contradicts to \(p\) is the minimality, then \(p(x)\mid h(x)\)

We call this polynomial the \(f\)-conductor of \(v\) into \(W\). Note that \(p(x)\mid m_f(x)\) since \(m_{f}(x)\in S(f,v)\)


Lemma

Suppose that \(\dim_k V<\infty\), let \(f:V\to V\) be a \(k\)-linear map.

Suppose \(m_{f}(x)=(x-c_{1})^{m_1}\cdot....\cdot\left(x-c_{r}\right)^{m_r}\) with \(c_1,...,c_r\in k\) and \(c_i\neq c_j\) if \(i\neq j\) and \(m_i\geq 0\)

Let \(W\subsetneq V\) be an \(f\)-invariant subspace, then \(\exists v\in V:\) 1. \(v\notin W\) 2. \((f-c\cdot Id)(v)\in W\) for some \(c\) eigenvalue of \(f\)

Proof

Main idea: Recall \(S(v,W)\) because it can send \(v\in V\) to a smaller subspace \(W\) via \(f\)-invariant and an important property: \(p(x)\mid m_f(x)\) which allowed us to find \(x-c\)

In other words, we want to prove that \(\exists v\notin W:S_f(v,W)\) contains a polynomial of degree 1 such that \(x-c\) where \(c\) is an eigenvalue of \(f\) (\((x-c)(f)(v)\in W\)​)

Let \(z\in V\setminus W\). Let \(g(x)\) be the \(f\)-conduct of \(z\) into \(W\). Then \(g(x)\mid m_f(x)\).

Since \(z\notin W\), then \(dgg(x)>0\), therefore \(g(x)=(x-c_{1})^{e_1}...(x-c_{r})^{e_r}\) with \(e_i\leq m_i,\forall i,1\leq i\leq r\) and \(e_1+...+e_r>0\)

Choose \(j\), \(1\leq j\leq r\) such that \(e_j>0\). Then \(x-c_{j}\mid g(x)\)

Let \(l(x)\in k[x]\) such that \(g(x)=(x-c_j)\cdot l(x)\)

Since \(dgl(x)<dgg(x)\), then we know that \(l(x)\notin S_f(z,W)\) that is \(\underbrace{l(f)(z)}_{v}\notin W\)

So \(v\notin W\) and \(g(f)(z)\in W\), then \((f-c_jId)(\underbrace{l(f)(z)}_{v})\in W\)

Then \((f-c_{j}Id)(v)\in W\)