- **1. (20 p.)** Let f be a linear operator on \mathbb{K}^2 . Prove that any non-zero vector which is not a characteristic vector for f is a cyclic vector for f. Hence, prove that either f has a cyclic vector or f is a scalar multiple of the identity operator.
- **2.** Define the linear operator f on \mathbb{R}^7 by the matrix

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 & 0 & -1 & 0 \\ -1 & 0 & 0 & -1 & 0 & 1 & 0 \end{pmatrix}$$

- (a) (15 p.) Show that f does not admit a cyclic vector.
- (b) (15 p.) Show that $W = \text{span}\{e_3, e_4 + e_6, e_5\}$ is not an *f*-admissible subspace.
- **3.** Let f be a linear operator on \mathbb{R}^9 whose matrix representation in the standard basis is

(2)	0	0	0	0	0	0	0	-1
1	2	0	0	0	0	0	0	-1
-3	3	2	0	0	0	-2	0	3
-2	2	0	2	0	0	-2	0	2
1	-1	0	-1	2	0	1	0	-1
0	0	0	0	0	2	0	0	0
-1	2	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0
$\setminus 0$	0	0	0	0	0	0	0	1/

Define $W = \text{span}\{e_6, e_1 + e_9\}.$

- (a) (20 p.) Show that W is an f-admissible subspace of \mathbb{R}^9 .
- (b) (30 p.) Using W determine two distinct cyclic decompositions of \mathbb{R}^9 associated with the linear operator f.