1. For the following pairs A, B, decide if there exists an invertible matrix P such that both $P^{-1}AP$ and $P^{-1}BP$ are diagonal. If the answer is positive, find such P.

(a) (15 p.)
$$A = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.
(b) (15 p.) $A = \begin{pmatrix} 3 & 2 & 2 \\ -2 & -1 & -2 \\ 2 & 2 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -1 & -1 & 1 \end{pmatrix}$.

2. Let $A, A' \in \mathbb{K}^{5 \times 5}$ be the following matrices:

	/0	1	0	0	0)			(0)	0	0	0	0	
	0	0	1	0	0			1	0	0	0	0	
A =	0	0	0	1	0	,	A' =	0	1	0	0	0	
	0	0	0	0	1			0	0	1	0	0	
	$\setminus 0$	0	0	0	0/			$\sqrt{0}$	0	0	1	0/	

- (a) (10 p.) Prove that both matrices are nilpotent.
- (b) (15 p.) Find bases \mathcal{B} and \mathcal{B}' for $\mathbb{R}_4[x]$ so that the matrix representation of the derivative operator with respect to \mathcal{B} is A, and with respect to \mathcal{B}' is A'.
- (c) (10 p.) Show that A is similar to A'.
- **3.** Consider \mathbb{R}^4 as a vector space over \mathbb{R} and let

$$W_1 = \operatorname{span}\{e_1 - e_3, e_1 - e_2\}, \quad W_2 = \operatorname{span}\{e_3 + e_4\}, \quad W_3 = \operatorname{span}\{-e_1 + e_2 - e_3\},$$

where $\mathcal{E} = \{e_1, e_2, e_3, e_4\}$ is the standard basis for \mathbb{R}^4 .

- (a) (5 p.) Show that $\mathbb{R}^4 = W_1 \oplus W_2 \oplus W_3$.
- (b) (30 p.) Find projections F_i on $T_i = \bigoplus_{\substack{1 \le j \le 3 \\ j \ne i}} W_j$ along W_i for i = 1, 2, 3.