Homework 8
-
(30 p.) For each of the following \(\mathbb{F}\)-vector spaces \(V\) and \(\Phi: V \times V \rightarrow \mathbb{F}\), show that \(\Phi\) is not an inner product on \(V\).
(a) \(\mathbb{F}=\mathbb{C}, V=\mathbb{C}^2, \Phi(x, y)=x_1 \bar{y}_2+x_2 \bar{y}_1+k x_2 \bar{y}_2\) with \(k \in \mathbb{R}\) fixed.
(b) \(\mathbb{F}=\mathbb{R}, V=\mathbb{R}^3, \Phi(u, v)=\|u \times v\|\), where \(u \times v\) the usual cross product of vectors in space.
(c) \(\mathbb{F}=\mathbb{R}, V=\mathbb{R}_3[x], \Phi(p, q)=p(0)q(0)+p(2)q(2)\).
(a) (1) consider \(\Phi(x+z, y)=(x_1+z_1)\bar{y}_2+(x_2+z_2)\bar{y}_1+k(x_2+z_2)\bar{y}_2\)
\(=x_1\bar{y}_2+x_2\bar{y}_1+kx_2\bar{y}_2+z_1\bar{y}_2+z_2\bar{y}_1+kz_2\bar{y}_2\) \(=\Phi(x, y)+\Phi(z, y)\)\(\Phi(\lambda x, y) = \lambda x_1 \bar{y}_2 + \lambda x_2 \bar{y}_1 + \lambda k x_2 \bar{y}_2\) \(= \lambda(x_1 \bar{y}_2 + x_2 \bar{y}_1 + k x_2 \bar{y}_2)\) \(= \lambda \Phi(x, y)\)
(2) $\Phi(x,y)=\overline{x_1}y_{2}+x_{2}\overline{y_1}+kx_{2}\overline{y_2}=\overline {\overline{x_1}y_2+\overline{x_2}y_1+\overline{kx_2}y_2}=\overline{\overline{x_1}y_2+\overline{x_2}y_1+k\overline{x_2}y_2} $ since \(k\in \R\)
\(=\overline{y_1\overline{x_2}+y_2\overline{x_1}+ky_2\overline{x_2}}=\overline{\Phi(y,x)}\)
(3) For \(\forall x \neq 0\), \(\Phi(x,x)=x_{1}\bar{x}_{2}+x_{2}\bar{x}_{1}+kx_{2}\bar{x}_{2}=x_{1}\bar{x}_{2}+x _{2}\bar{x}_{1}+k||x_{2}||^{2}\) is not always \(>0\).
Counter example: \(x = (1,1)\) and \(k = -1000\). \(\Phi(x,x) = 1+1 - 1000 = -998 < 0\).
Thus this is not inner product.
(b) Consider \(\Phi(u+w, v) = ||(u+w) \times v|| = ||u \times v + w \times v|| \le ||u \times v|| + ||w \times v|| = \Phi(u,v) + \Phi(w,v)\)
Counter example: \(u \times v = (1,1,2)\), \(w \times v = (0,2,0)\)
\(||u \times v + w \times v|| = ||(1,3,2)|| = \sqrt{14}\), \(||u\times v||+||w\times v||=\sqrt{6}+2\)
Thus \(||u \times v + w \times v|| \ne ||u \times v|| + ||w \times v||\).
Thus this is not inner product.
(c) (1) Consider \(\Phi(p+t, q) = (p+t)(0)q(0) + (p+t)(2)q(2)\)
\(= [p(0)+t(0)]q(0) + [p(2)+t(2)]q(2)\)
\(= p(0)q(0) + t(0)q(0) + p(2)q(2) + t(2)q(2)\)
\(= \Phi(p,q) + \Phi(t,q)\)\(\Phi(\lambda p, q) = \lambda p(0)q(0) + \lambda p(2)q(2) = \lambda [p(0)q(0) + p(2)q(2)] = \lambda \Phi(p,q)\)
(2) \(\Phi(p,q) = p(0)q(0) + p(2)q(2) = q(0)p(0) + q(2)p(2)\). Since \(F=\mathbb{R}, V=\mathbb{R}_3[x]\)
\(= \overline{q(0)p(0) + q(2)p(2)} = \overline{\Phi(q,p)}\)(3) \(\Phi(P,P) = P(0)^2 + P(2)^2\). This can be \(0\).
Counter example: \(P(x)=x^2-2x\). \(\implies P(0)=0\), \(P(2)=0\), \(P(x) \ne 0\)
\(\implies \Phi(P,P) = 0+0=0\)
Thus this is not inner product. -
(30 p.) Let \(V = C([a, b])\) be the \(\mathbb{R}\)-vector space of continuous real-valued functions on \([a, b]\), and let \(w \in V\) be a fixed function such that \(w(x) > 0\) for all \(x \in [a, b]\).
(a) Show that the formula \(\langle f, g \rangle = \int_a^b f(x)g(x)w(x) \, dx\) defines an inner product on \(V\).
(b) Let \(S\) be the subspace of \(C([0, 1])\) generated by the set \(\mathcal{B} = \{1, x, e^x\}\). Show that \(\mathcal{B}\) is a basis for \(S\) and compute the matrix \([\langle -, - \rangle]_{\mathcal{B}}\) with \(w(x) = 1\) for all \(x \in [0, 1]\).
a) (1) \(\langle f+h, g \rangle = \int_a^b (f+h)(x) g(x) w(x) dx = \int_a^b [f(x)+h(x)] g(x) w(x) dx\)
\(= \int_a^b f(x) g(x) w(x) dx + \int_a^b h(x) g(x) w(x) dx = \langle f, g \rangle + \langle h, g \rangle\)
\(\langle \lambda f, g \rangle = \int_a^b \lambda f(x) g(x) w(x) dx = \lambda \int_a^b f(x) g(x) w(x) dx = \lambda \langle f, g \rangle\)
(2) \(\langle f, g \rangle = \int_a^b f(x) g(x) w(x) dx = \int_a^b g(x) f(x) w(x) dx\)
Since \(F = \mathbb{R}\) and functions are real-valued, then \(\langle f, g \rangle = \overline{\int_a^b g(x) f(x) w(x) dx} = \overline{\langle g, f \rangle}\)(3) \(\forall f\ne0,\langle f,f\rangle=\int_{a}^{b}f(x)^{2}w(x)dx\).
let \(t \in [a,b]\) s.t. \(f(t) \ne 0\). Then \(f\) is continuous at \(t\).
① \(f(t) > 0\). Then \(\begin{cases} f(t)>0 \\ w(t)>0 \end{cases} \forall x \in (t-\delta, t+\delta)\).
Then \(\lang f,f\rang = \int_{a}^{b}f(x)^{2} w(x) dx = \int_{t-\delta}^{t+\delta}f(x)^{2} w(x) d x + \int_{[a,b]\setminus (t-\delta, t+\delta)}f(x)^{2} w(x) dx\).
Then the first term \(>0\). the second term \(\ge 0\). Then \(\langle f,f\rangle>0\).
② \(f(t)<0\). Then \(\begin{cases} f(t)<0 \\ w(t)>0 \end{cases} \forall x \in (t-\delta, t+\delta)\).
Then \(\lang f,f\rang = \int_{a}^{b}f(x)^{2} w(x) dx = \int_{t-\delta}^{t+\delta}f(x)^{2} w(x) d x + \int_{[a,b]\setminus (t-\delta, t+\delta)}f(x)^{2} w(x) dx\).
Then the first term \(>0\). the second term \(\ge 0\). Then \(\lang f,f\rang >0\).
Thus \(\lang f,f\rang >0, \forall f \ne 0\). Thus this is a inner product.
(b) To prove \(B\) is a basis. Since \(S\) is generated by \(B\), then just need to prove \(B\) is linearly independent.
Consider \(0 = a_1 + a_2x + a_3e^x\), when \(x=0\): \(a_1 + a_3 = 0\), \(x=1\): \(a_1 + a_2 + ea_3 = 0\)
\(x=\frac{1}{2}\): \(a_1 + \frac{1}{2}a_2 + \sqrt{e}a_3 = 0\), then \(a_3 = a_2 = a_1 = 0\). Thus \(B\) is basis.
\(w(x)=1\). \([\langle-,- \rangle]_B = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ \vdots & \vdots & \vdots \\ a_{31} & a_{32} & a_{33} \end{pmatrix}\) where \(a_{ij}= \langle v_{j}, v_{i} \rangle\), \(1 \leq i, j \leq 3\).
\(a_{11}= \langle v_{1}, v_{1}\rangle = \langle 1, 1 \rangle = \int_{0}^{1}w(x) dx = \int_{0}^{1}1 dx = 1\)
\(a_{12}=\langle v_{2},v_{1}\rangle=\langle x,1\rangle=\int_{0}^{1}xdx=\frac{1}{2} x^{2}|_{0}^{1}=\frac{1}{2}\)
\(a_{13}=\langle v_{3},v_{1}\rangle=\langle e^{x},1\rangle=\int_{0}^{1}e^{x}dx=e^{x} |_{0}^{1}=e-1\)
\(a_{21}=\langle v_{1},v_{2}\rangle=\langle1,x\rangle=\int_{0}^{1}xdx=\frac{1}{2}\)
\(a_{22}= \langle v_{2}, v_{2} \rangle = \langle x, x \rangle = \int_{0}^{1} x^{2} dx = \frac{1}{3}x^{3}|_{0}^{1} = \frac{1}{3}\)
\(a_{23}=\langle v_{3},v_{2}\rangle=\langle e^{x},x\rangle=\int_{0}^{1}xe^{x}dx=xe ^{x}|_{0}^{1}-\int_{0}^{1}e^{x}dx=e-e+1=1\)
\(a_{31}= \langle v_{1}, v_{3}\rangle = e-1\)
\(a_{32}= \langle v_{2}, v_{3}\rangle = 1\)
\(a_{33}= \langle v_{3}, v_{3}\rangle = \int_{0}^{1}e^{2x}dx = \frac{1}{2}e^{2x}|_{0} ^{1}= \frac{1}{2}e^{2}-\frac{1}{2}\)
Thus \([\langle-,- \rangle]_{B}= \begin{pmatrix} 1 & \frac{1}{2} & e -1 \\ \frac{1}{2} & \frac{1}{3} & 1 \\ e -1 & 1 & \frac{1}{2}e^{2}-\frac{1}{2} \end{pmatrix}\) -
(40 p.) Let \(V\) be a vector space of dimension \(n\), and let \(B = \{v_1, \dots, v_n\}\) be a basis for \(V\).
(a) Show that there exists a unique inner product on \(V\) for which \(B\) is orthonormal.
(b) Find the inner product in the following cases:
i. \(V = \mathbb{R}^2\) and \(B = \{(-2, 1), (1, 1)\}\),
ii. \(V = \mathbb{C}^3\) and \(B = (1, i, 1), (0, 1, i), (0, 0, 1)\).
(a) Uniqueness:
Since \(\Phi(v,w)=\overline{[w]_{B}^{t}}[\Phi]_{B}[v]_{B}\). Then inner product is unique iff \([\Phi]_B\) is unique. And we know when \(B\) is orthonormal, \([\Phi]_B = I_{n \times n}\).
Thus, it exists, inner product is unique.
Existence.
Since \([\Phi]_B = I_{n \times n}\), then \([\Phi]_E = C(E, B)^T [\Phi]_B \overline{C(E, B)} = (C(B, E)^{-1})^T \overline{C(B, E)^{-1}}\).
Since \(B\) is basis and \(E\) is basis, then \(C(B, E)\) exists, then \([\Phi]_E\) exists. Then inner product exists
(b)
①Since \([\Phi]_{E}=(C(B,E)^{-1})^{t}\cdot\overline{C(B,E)^{-1}}\) and \(C(B,E) = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix}\)
Then \([\Phi]_{E}\)
\(= \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}^{t} \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}\) \(= \begin{pmatrix} \frac{2}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{5}{9} \end{pmatrix}\)
Then \(\Phi((x_{1},x_{2}),(y_{1},y_{2}))=\frac{2}{9}x_1y_1+\frac{1}{9}x_1y_2+\frac{1}{9}x_2y_1+\frac{5}{9}x_2y_2\)
② Since \([\Phi]_{E}=(C(B,E)^{-1})^{t}\cdot\overline{C(B,E)^{-1}}\) and \(C(B,E)= \begin{pmatrix} 1 & 0 & 0 \\ i & 1 & 0 \\ 1 & i & 1 \end{pmatrix}\)
Then \([\Phi]_{E}= \begin{pmatrix} 1 & 0 & 0 \\ -i & 1 & 0 \\ -2 & -i & 1 \end{pmatrix}^{t}\overline{\begin{pmatrix}1 & 0 & 0\\ -i & 1 & 0\\ -2 & -i & 1\end{pmatrix}}\) \(= \begin{pmatrix} 6 & -3i & -2 \\ 3i & 2 & -i \\ -2 & i & 1 \end{pmatrix}\)
Then \(\Phi\left((x_{1},x_{2},x_{3}\right),\left(y_{1},y_{2},y_{3}))=6x_{1}\bar{y_1}-3i x_{1}\bar{y_2}-2x_{1}\bar{y_3}+3ix_{2}\bar{y_1}+2x_{2}\bar{y_2}-ix_{2}\bar{y_3}-2 x_{3}\bar{y_1}+ix_{3}\bar{y_2}+x_{3}\bar{y_3}\right.\)by formula \(\Phi(v,w)=\overline{[w]_{B}^{t}}[\Phi]_{B}[v]_{B}\)