Homework 2
-
Let \(A \in \mathbb{R}^{3\times3}\) be a matrix such that \(\chi_{A}(x) = (x^{2} - 2)(x+ 1)\). Consider \(B = -A^{4}+ 2A^{2}- I\).
-
(10 p.) Is \(B\) diagonalizable?
Since \(\chi_A(x)=0\), then \(x=\pm\sqrt{2},-1\), then we have three different eigenvectors and matrix is rank 3
Thus \(A\) is diagonalizable, then \(\exists P\in\mathbb{R}^{3\times3}:D=P^{-1}AP\)
Then \(B=-A^{4}+2A^{2}-I=-PD^{4}P^{-1}+2PD^{2}P^{-1}-PIP^{-1}=-P\left(D^{4}-2D^{2}+I\right )P^{-1}\)
And we know \(D\) is diagonal matrix, thus \(D^{4}-2D^{2}+I=D'\) is also diagonal. Thus we find the diagonal matrix of \(B\) is \(D'\) and the change of basis matrix is \(P\)
Thus \(B\) is diagonalizable 2. (5 p.) What are the eigenvalues of \(B\)?
Since \(B = -A^{4}+ 2A^{2}- I\), then \(Bv=-\left(Av\right)^{4}+2\left(Av\right)^{2}-\left(Iv\right)=\lambda^{\prime}v=- \lambda^{4}v+2\lambda^{2}v-v\).
Thus we have \(\lambda^{\prime}=-\lambda^{4}+2\lambda^{2}-1\), then we know \(\lambda=\pm \sqrt2,-1\), thus \(\lambda'=-1,-1,0\) 3. (5 p.) What is \(\det(B)\)?
First, we compute \(D^{4}-2D^{2}+I= \begin{pmatrix} 4 & \placeholder{} & \placeholder{} \\ \placeholder{} & 4 & \placeholder{} \\ \placeholder{} & \placeholder{} & 1 \end{pmatrix}- \begin{pmatrix} 4 & \placeholder{} & \placeholder{} \\ \placeholder{} & 4 & \placeholder{} \\ \placeholder{} & \placeholder{} & 2 \end{pmatrix}+ \begin{pmatrix} 1 & \placeholder{} & \placeholder{} \\ \placeholder{} & 1 & \placeholder{} \\ \placeholder{} & \placeholder{} & 1 \end{pmatrix}= \begin{pmatrix} 1 & \placeholder{} & \placeholder{} \\ \placeholder{} & 1 & \placeholder{} \\ \placeholder{} & \placeholder{} & 0 \end{pmatrix}\)
Then \(\det(B)=\det\left\lbrack-P\left(D^{4}-2D^{2}+I\right)P^{-1}\right\rbrack=-\det\left (D^{4}-2D^{2}+I\right)=0\) 4. (5 p.) What is \(\operatorname{tr}(B)\)?
We know \(B=-P\left(D^{4}-2D^{2}+I\right)P^{-1}\), then \(\text{tr}(B)=\text{tr}(-P\left(D^{4}-2D^{2}+I\right)P^{-1})=\text{tr}(-PP^{-1}\left (D^{4}-2D^{2}+I\right))=-\text{tr}(D^{4}-2D^{2}+I)\)
Then \(D^{4}-2D^{2}+I= \begin{pmatrix} 4 & \placeholder{} & \placeholder{} \\ \placeholder{} & 4 & \placeholder{} \\ \placeholder{} & \placeholder{} & 1 \end{pmatrix}- \begin{pmatrix} 4 & \placeholder{} & \placeholder{} \\ \placeholder{} & 4 & \placeholder{} \\ \placeholder{} & \placeholder{} & 2 \end{pmatrix}+ \begin{pmatrix} 1 & \placeholder{} & \placeholder{} \\ \placeholder{} & 1 & \placeholder{} \\ \placeholder{} & \placeholder{} & 1 \end{pmatrix}= \begin{pmatrix} 1 & \placeholder{} & \placeholder{} \\ \placeholder{} & 1 & \placeholder{} \\ \placeholder{} & \placeholder{} & 0 \end{pmatrix}\)
Thus \(\text{tr}(B)=-2\)
-
-
Consider the matrix \(A \in \mathbb{R}^{4\times4}\) given by \(A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}.\)
-
(12 p.) For each integer \(d\) from 1 to 4, find \(d\)-dimensional subspaces that are invariant under the linear transformation \(f\) associated with \(A\).
-
\(1\)-dimensional subspaces
Take canonical basis, then \(A(e_{1})=2e_{1},A(e_{2})=e_{1}+2e_2,A(e_{3})=e_{2}+2e_3,A(e_{4})=2e_{4}\),
Thus 1-dimensional subspaces is \(\lang e_1\rang\) or \(\lang e_4\rang\) 2. \(2\)-dimensional subspaces
\(\lang e_1,e_2\rang\) or \(\lang e_1,e_4\rang\) 3. \(3\)-dimensional subspaces
\(\lang e_1,e_2,e_3\rang\) or \(\lang e_1,e_2,e_4\rang\) 4. \(4\)-dimensional subspaces
\(\R^4\) 2. (13 p.) Find an infinite collection of 1-dimensional \(f\)-invariant subspaces.
We know \(A(e_{1})=2e_{1},A(e_{2})=e_{1}+2e_2,A(e_{3})=e_{2}+2e_3,A(e_{4})=2e_{4}\)
Thus we can consider 1-dimensional subspaces \(S=\langle ae_{1}+be_{2}+ce_{3}+de_{4}:a,b,c,d\in\mathbb{R}\rangle\)
Then take \(v=ae_{1}+be_{2}+ce_{3}+de_{4}\), then \(f(v)=f(ae_{1}+be_{2}+ce_{3}+de_{4})=af\left(e_{1}\right)+bf\left(e_{2}\right)+cf \left(e_{3}\right)+df\left(e_{4}\right)\)
\(=2ae_{1}+be_{1}+2be_{2}+ce_{2}+2ce_{3}+2de_{4}=(2a+b)e_{1}+(2b+c)e_{2}+2ce_{3}+2 de_{4}\)
By def of invariant subspaces, this should be in \(S\)
Thus we have \(\begin{cases} 2a+b=\lambda a \\ 2b+c=\lambda b \\ 2c=\lambda c \\ 2d=\lambda d \end{cases}\Rightarrow \begin{pmatrix} 2-\lambda & 1 & 0 & 0 \\ 0 & 2-\lambda & 1 & 0 \\ 0 & 0 & 2-\lambda & 0 \\ 0 & 0 & 0 & 2-\lambda \end{pmatrix}\Rightarrow\lambda=2,b=c=0,a,d\in\mathbb{R}\)
Thus \(S=\langle e_{1}+de_{4}:d\in\mathbb{R}\rangle\)
-
-
-
(20 p.) Let \(f\) be a linear operator on \(V\). Prove that every subspace of \(V\) is \(f\)-invariant if and only if \(f\) is a scalar multiple of the identity.
\(\Rightarrow\))
When \(\dim W=1\), then \(W=\langle w_{1}\rangle\), then take \(w=\lambda_{1}w_{1}\in W\), \(f(w)=f(\lambda_{1}w_{1})=u_{1}w_{1}\) since \(W\) is \(f-\text{invariant}\)
Since \(f\) is linear operator, then \(\lambda_{1}f\left(w_{1}\right)=u_{1}w_{1}\Rightarrow f\left(w_{1}\right)=\frac{u_{1}}{\lambda_{1}} w_{1}=kw_{1}\)
Suppose \(f(v)=kv\) for \(v=w_1,...,w_{m-1}\) and \(W=\langle w_{1},...,w_{m-1}\rangle\) which means \(\dim W=1,2,...,m-1\)
When \(\dim W=m\), then \(W=\langle w_{1},w_{2},\ldots,w_{m}\rangle\), then take \(v=w_{1}+w_{2}+\cdots+w_{m}\in W\), \(f(v)=tv\) since \(W\) is \(f-\text{invariant}\)
Then \(f(w_{1}+w_{2}+\cdots+w_{m})=t(w_{1}+w_{2}+\cdots+w_{m})\Rightarrow f(w_{1})+f(w_{2} )+\cdots+f\left(w_{m}\right)=tw_{1}+tw_{2}+\cdots+tw_{m}\) since \(f\) is linear
Then \(kw_1+...+f(w_m)=tw_1+...+tw_m\) by hypothesis
Again, \(f\) is invariant, then assume \(f(w_m)=pw_m\), then \(kw_{1}+...+pw_{m}=tw_{1}+...+tw_{m}\)
Thus \((k-t)w_1+(k-t)w_2+...+(p-t)w_m=0\), since \(w_1,...,w_m\) is basis, then \(k=p=t\)
Thus \(f(w_m)=kw_m\), then for any \(v\in W:v=\lambda_{1}w_{1}+....+\lambda_{m}w_{m}\), \(f(v)=f\left(\lambda_{1}w_{1}+....+\lambda_{m}w_{m})=\lambda_{1}f\left(w_{1}\right )+\cdots+\lambda_{m}f\left(w_{m}\right)=\lambda_{1}tw_{1}+\cdots+\lambda_{m}tw_{m} =t(\lambda_{1}w_{1}+...+\lambda_{m}w_{m}\right)\)
\(\Leftarrow\)) We know \(f\) is linear and \(f(v)=kv\)
Then take \(W=\langle w_{1},...,w_{m}\rangle\subseteq V\) for \(m\in \N\), then \(w=\lambda_{1}w_{1}+\ldots+\lambda_{m}w_{m}\)
Then \(f(w)=k(\lambda_{1}w_{1}+\ldots+\lambda_{m}w_{m})\in W\), thus every subspace of \(V\) is \(f\)-invariant
-
Indicate whether the following statements are true or false. Justify your response.
-
(10 p.) If the minimal polynomial of the matrix \(A\) is a divisor of \(p(x) = (x^2 - 1)(x^2 + 2x)\), then \(A\) is diagonalizable.
True
Since \(p(x)=(x+1)(x-1)(x)(x+2)\) and \(m_{A}(x)\mid p(x)\), then \(m_{A}(x)\) is a product of linear factors, then by theorem, \(A\) is diagonalizable 2. (10 p.) If \(A \in \mathbb{R}^{3\times3}\) is diagonalizable and \((A - 3I)^{2}(A + 2I) = 0\), then the characteristic polynomial is \(\chi_A(x) = (x- 3)^2(x+ 2)\).
False
\((A - 3I)^{2}(A + 2I) (v)= 0\Rightarrow (Av - 3v)^{2}(Av + 2v) = 0\Rightarrow (\lambda v-3v)^2(\lambda v+2v)=0\)
Then \((\lambda -3)^2(\lambda +2)=0\), thus \(\lambda=3,-2\) are eigenvalues
Thus \(3,-2\) are roots of \(\chi_{A}(x)\), then \(\chi_{A}(x)=(x-3)^{a}(x+2)^{b}\), but we cannot ensure the multiplicity 3. (10 p.) If \(u\) and \(v\) are eigenvectors of a linear operator \(f\) on a finite-dimensional vector space \(V\), then \(\operatorname{span}\{u+ v\}\) is an \(f\)-invariant subspace of \(V\).
False
Consider \(w=a\left(u+v\right)\in\text{span}\{u+v\}\), then \(f(w)=f(au+av)=af(u)+af(v)=a\lambda_{1}u+a\lambda_{2}v\), but we don't know if \(u,v\) belong to the same eigenvalue
Thus \(\lambda_1\) may not equal to \(\lambda_2\), then \(f(w)\) may not in \(\text{span}\{u+v\}\), thus it may not be \(f\)-invariant subspace of \(V\)
-