

Homework 4

1) (30 pts) Let V be a \mathbb{F} -vector space such that $\dim(V) = n$ and let $U \subseteq V$ be subspace of V such that $\dim(U) = n - 1$.

- (a) Prove that if $v \notin U$, then $V = U \oplus \langle v \rangle$.
- (b) Prove that if W is a subspace of V such that $W \not\subseteq U$, then V = U + W.
- 2) (30 pts) Let $U = \{ p \in P_4(\mathbb{F}) : p(2) = p(5) = p(6) \}.$
- (a) Find a basis of U.
- (b) Extend the basis in part (a) to a basis of $P_4(\mathbb{F})$.
- (c) Find a subspace W of $P_4(\mathbb{F})$ such that $P_4(\mathbb{F}) = U \oplus W$.

3) (30 pts) Consider the vector space of 2×2 matrices $M_2(\mathbb{R})$. Let W_1 be the set of matrices of the form $\begin{pmatrix} x & -x \\ y & z \end{pmatrix}$ and let W_2 be the set of matrices of the form $\begin{pmatrix} a & b \\ -a & c \end{pmatrix}$.

- (a) Prove that W_1 and W_2 are subspaces of $M_2(\mathbb{R})$.
- (b) Find the dimensions of $W_1, W_2, W_1 + W_2$ and $W_1 \cap W_2$. Give an explicit basis for each of these subspaces.

4) (10 pts) Consider the real vector space $M_2(\mathbb{F})$. Find a basis $\{A_1, A_2, A_3, A_4\}$ for $M_2(\mathbb{F})$ such that $A_k^2 = A_k$ for each k = 1, 2, 3, 4.