

Homework 3

1) (30 pts) Find a spanning list of vectors for S + T as a subspace of the \mathbb{F} -vector space V for the following subspaces S and T.

- (a) $S = \{(x, y, z) \in \mathbb{R}^3 : 2x 3y + 2z = 0\}$ and $T = \{(x, y, z) \in \mathbb{R}^3 : x + z = 0\}$ where $V = \mathbb{R}^3$, $\mathbb{F} = \mathbb{R}$.
- (b) $S = \langle (2, -i), (1, i), (1 + i, -i) \rangle$ and $T = \langle (i, 0), (i, 2i), (0, 1) \rangle$ where $V = \mathbb{C}^2$, $\mathbb{F} = \mathbb{R}$.
- 2) (30 pts) Consider the following subspace of \mathbb{F}^5 :

 $U = \{(x, y, x + y, x - y, 2x) \in \mathbb{F}^5 \colon x, y \in \mathbb{F}\}.$

Find three subspaces W_1 , W_2 , W_3 of \mathbb{F}^5 (none of them equal to $\{0\}$) such that $\mathbb{F}^5 = U \oplus W_1 \oplus W_2 \oplus W_3$.

3) (25 pts) Let $A = (a_{ij}) \in M_n(\mathbb{F})$ be an upper triangular matrix, that is $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$.

Suppose that the diagonal entries of A are not equal to 0 $(a_{ii} \neq 0 \text{ for every } i = 1, ..., n)$ and denote by v_1, \ldots, v_n the columns of A. Prove that $\{v_1, \ldots, v_n\}$ is linearly independent and spans every vector in \mathbb{F}^n .

4) (15 pts) Prove or give a counterexample: if $\{v_1, v_2, \ldots, v_n\}$ is a linearly independent list of vectors in V, then

$$\{5v_1 - 4v_2, v_2, v_3, \dots, v_n\}$$

is linearly independent.