

Homework 1

- 1) (30 pts) Decide if the following statements are true or false and justify your answer:
- (a) Let \mathbb{F} be a field and $a \in \mathbb{F}$. If there exists a natural number n such that $a^n = 0$ (where $a^n = a.a...a$ n times), then a = 0.
- (b) Let \mathbb{F} be a field and $a \in \mathbb{F}$. If there exists a natural number n such that n.a = 0 (where $n.a = a + a + \cdots + a$ n times), then a = 0.
- (c) Let \mathbb{F} be a field. If there exists $a \in \mathbb{F}$, $a \neq 0$ and a natural number n such that n.a = 0, then n.x = 0 for every $x \in \mathbb{F}$.
- 2) (20 pts) (30 pts) Consider $G_n = \{ w \in \mathbb{C} : w \text{ is a n-th root of unity} \}$. Reduce the following expressions:

(a)
$$w^{22} + (w^2 + w)^2 + \overline{w}^{106} - w^{31} + w^{138}$$
 for any $w \in G_7$.

(b)
$$w^{-51} - \overline{w}^{74} + w^{33} \cdot w^{-355} + \overline{w^{-127}}$$
 for any $w \in G_5$

(c)
$$\sum_{k=8}^{19} w^{2k+1}$$
 for any $w \in G_{12}$.

3) (20 pts) Find a polynomial $p(x) \in \mathbb{R}[x]$ of minimal degree satisfying the following properties:

- The solutions of $z^2 + z = \overline{z}$ are roots of p(x).
- The sum of all the roots of p(x) is equal to zero.
- One of the real roots of p(x) has multiplicity m = 2.

4) Let $p(x) = 6x^5 - 25x^4 + 39x^3 - 2x^2 - 6x$. Write p(x) as a product of irreducible polynomials over the following fields:

- (a) \mathbb{R} .
- (b) \mathbb{C} .