Homework 5
-
(25 pts) Prove the following statement only by using dimensions: the only subspaces of \(\R^{2}\) are \(\R^{2}\), \({\{(0,0)\}}\) and \(L={\{\lambda(a,b):\lambda\in \R\}}\) for \((a, b) \in \R^{2}\).
Let \(V\) be a subspace of \(\mathbb{R}^2\) \(\Rightarrow(0,0) \in V\) by definition. We have 2 cases.
- \(V\) has only one element \(\Rightarrow V\) must be \(V = \{(0,0)\}\)
-
\(V\) has more than one element \(\Rightarrow\exists v=\left(a,b\right)\in V\) with \(v\neq(0,0)\)
Since \(V\) is a subspace, \(\lambda v=\lambda\left(a,b\right)\in V\) for all \(\lambda \in \mathbb{R}\), then \(M\subseteq V\)
If \(M=V\), we are done
If \(M\subset V\), then \(\exists w\in V,w\neq \lambda v\)
Since we have \(v,w\in V\) such that \(w\neq\lambda v\)
Thus \(\forall x,y\in\mathbb{R},(x,y)\in\mathbb{R}^2\), we have \((x,y)=\lambda v+\mu w\) for \(\lambda,\mu\in\mathbb{R}\)
This is possible since \(w\neq\lambda v\) for \(\lambda \in \mathbb{R}\)
Therefore \(V=\mathbb{R}^2\).
Thus the only subspaces of \(\mathbb{R}^2\) are \(\mathbb{R}^2\), \(\{(0,0)\}\) and \(M=\{\lambda(a,b):a,b\in\mathbb{R},\lambda\in\mathbb{R}\}\)
-
(20 pts) Decide whether the following statements are true or false. Prove or give a counterexample.
-
Let \(V\) be a vector space with \(\dim(V) = 42\). If \(V_1\) and \(V_2\) are subspaces of \(V\) with \(\dim(V_1) = 33\) and \(\dim(V_2) = 9\) such that \(V = V_1 + V_2\), then \(V = V_1 \oplus V_2\).
True, proof
Since we know \(\dim(V_{1}+V_{2})=\dim(V_{1})+\dim(V_{2})-\dim(V_{1}\cap V_{2})\)
Then \(42=33+9-\dim(V_1\cap V_2)\), then \(\dim(V_1\cap V_2)=0\), thus \(V_{1}\cap V_{2}=\{0\}\)
Thus \(V = V_1 \oplus V_2\). 2. Let \(V\) be a vector space with \(\dim(V) = 42\). If \(V_1\) and \(V_2\) are subspaces of \(V\) with \(\dim(V_1) = 33\) and \(\dim(V_2) = 9\) such that \(V_1 \cap V_2 \neq {\{0\}}\), then \(V = V_1 \oplus V_2\).
False, counterexample
\(V=\left\lbrace(a_{1},...,a_{42}):a_{1},\ldots,a_{42}\in\mathbb{R}\right\rbrace\) and \(V_{1}=\left\lbrace(a_{1},...,a_{33},\underbrace{0,\ldots,0}_{9\text{ zeros}}):a_{1} ,\ldots,a_{33}\in\mathbb{R}\right\rbrace\) and \(V_{2}=\left\lbrace\left(\underbrace{0,\ldots,0}_{32\text{ zeros}},a_{33},\ldots, a_{41},0\right):a_{33},\ldots,a_{41}\in\mathbb{R}\right\rbrace\)
Then clearly \(V_1\) and \(V_2\) are subspaces of \(V\) with \(\dim(V_1) = 33\) and \(\dim(V_2) = 9\) such that \(V_1 \cap V_2 \neq {\{0\}}\)
But \(V\neq V_{1}\oplus V_{2}\) since \(a_{42}=0\) in \(V_1+V_2\), then \(V_1\oplus V_2\subsetneq V\) 3. Let \(V_1\) and \(V_2\) be subspaces of \(F^8\) such that \(\dim(V_1) = \dim(V_2) = 4\), then \(F^8 = V_1 \oplus V_2\).
False, counterexample
Let \(V=\left\lbrace(a_{1},...,a_{8}):a_{1},\ldots,a_{8}\in F\right\rbrace\) and \(V_{1}=\left\lbrace(a_{1},...,a_{4},\underbrace{0,\ldots,0}_{4\text{ zeros}}):a_{1} ,\ldots,a_{4}\in F\right\rbrace\) and \(V_{2}=\left\lbrace\left(\underbrace{0,\ldots,0}_{3\text{ zeros}},a_{3},\ldots,a_{7} ,0\right):a_{3},\ldots,a_{7}\in F\right\rbrace\)
Here \(\dim(V_1) = \dim(V_2) = 4\), but \(V\neq V_{1}\oplus V_{2}\) since \(a_{8}=0\) in \(V_1+V_2\), then \(V_1\oplus V_2\subsetneq V\) 4. Let \(V_1\) and \(V_2\) be subspaces of \(F^8\) such that \(\dim(V_1) = \dim(V_2) = 5\), then \(V_1 \cap V_2 = {\{0\}}\).
False, counterexample
Let \(V=\left\lbrace(a_{1},...,a_{8}):a_{1},\ldots,a_{8}\in F\right\rbrace\) and \(V_{1}=\left\lbrace(a_{1},...,a_{5},\underbrace{0,\ldots,0}_{3\text{ zeros}}):a_{1} ,\ldots,a_{5}\in F\right\rbrace\) and \(V_{2}=\left\lbrace\left(\underbrace{0,\ldots,0}_{3\text{ zeros}},a_{3},\ldots,a_{7} ,a_{8}\right):a_{3},\ldots,a_{8}\in F\right\rbrace\)
Here \(\dim(V_1) = \dim(V_2) = 5\), but \(V_{1}\cap V_{2}=\left\lbrace\left(0,0,0,a_{3},a_{4},a_{5},0,0,0\right):a_{3},a_{4} ,a_{5}\in F\right\rbrace\neq{\{0\}}\).
-
-
(25 pts) Prove that the elementary row operation of interchanging two rows of a matrix can be accomplished by a finite sequence of elementary row operations of the other two types (that is, multiplying a row by a constant and/or adding a multiple of a row to another row).
Assume we have \(\begin{cases} a_{11}x_{1}+\dots+a_{1n}x_{n}=b_{1} \\ \vdots \\ a_{i1}x_{1}+\dots+a_{in}x_{n}=b_{i},\quad\text{equation i} \\ a_{j1}x_{1}+\dots+a_{jn}x_{n}=b_{j},\quad\text{equation j} \\ \vdots \\ a_{m1}x_{1}+\dots+a_{mn}x_{n}=b_{m} \end{cases}\)
Then \(R_{i}+R_{j}\to R_{j}\)
Then we get \(\begin{cases} a_{11}x_{1}+\dots+a_{1n}x_{n}=b_{1} \\ \vdots \\ a_{i1}x_{1}+\dots+a_{in}x_{n}=b_{i},\quad\text{equation i} \\ a_{i1}x_{1}+\dots+a_{in}x_{n}+\left(a_{j1}x_{1}+\dots+a_{jn}x_{n}\right)=b_{i}+b_{j},\quad\text{equation j} \\ \vdots \\ a_{m1}x_{1}+\dots+a_{mn}x_{n}=b_{m} \end{cases}\)
Then \(R_{i}-R_{j}\to R_{i}\)
Then we get \(\begin{cases} a_{11}x_{1}+\dots+a_{1n}x_{n}=b_{1} \\ \vdots \\ -\left(a_{j1}x_{1}+\dots+a_{jn}x_{n}\right)=-b_{j},\quad\text{equation i} \\ a_{i1}x_{1}+\dots+a_{in}x_{n}+\left(a_{j1}x_{1}+\dots+a_{jn}x_{n}\right)=b_{i}+b_{j},\quad\text{equation j} \\ \vdots \\ a_{m1}x_{1}+\dots+a_{mn}x_{n}=b_{m} \end{cases}\)
Then \(R_{i}+R_{j}\to R_{j}\)
Then we get \(\begin{cases} a_{11}x_{1}+\dots+a_{1n}x_{n}=b_{1} \\ \vdots \\ -\left(a_{j1}x_{1}+\dots+a_{jn}x_{n}\right)=-b_{j},\quad\text{equation i} \\ a_{i1}x_{1}+\dots+a_{in}x_{n}=b_{i},\quad\text{equation j} \\ \vdots \\ a_{m1}x_{1}+\dots+a_{mn}x_{n}=b_{m} \end{cases}\)
Then \(-R_{i}\to R_{i}\)
Then we get \(\begin{cases} a_{11}x_{1}+\dots+a_{1n}x_{n}=b_{1} \\ \vdots \\ a_{j1}x_{1}+\dots+a_{jn}x_{n}=b_{j},\quad\text{equation i} \\ a_{i1}x_{1}+\dots+a_{in}x_{n}=b_{i},\quad\text{equation j} \\ \vdots \\ a_{m1}x_{1}+\dots+a_{mn}x_{n}=b_{m} \end{cases}\)
-
(30 pts) Let \(A = \begin{pmatrix} a & 1 & a^2 \\ 1 & a & 1 \\ 1 & a^2 & 2a \end{pmatrix}\)
-
By applying elementary row operations, determine for which values of \(a \in R\) the matrix \(A\) is invertible.
Consider augmented matrix: \(A=\left( \begin{array}{ccc|ccc} a & 1 & a^2 &1 &0 & 0\\ 1 & a & 1 & 0&1&0\\ 1 & a^2 & 2a &0 &0&1 \end{array} \right)\)
Let \(R_2-R_3\to R_2,R_1-aR_3\to R_1\), we get \(\left( \begin{array}{ccc|ccc} 0 & 1-a^3 & -a^2 & 1 & 0 & -a \\ 0 & a-a^2 & 1-2a & 0 & 1 & -1 \\ 1 & a^2 & 2a & 0 & 0 & 1 \end{array}\right)\)
Let \(R_1 \leftrightarrow R_3\), we get \(\left( \begin{array}{ccc|ccc} 1 & a^2 & 2a & 0 & 0 & 1 \\ 0 & a\left(1-a\right) & 1-2a & 0 & 1 & -1 \\ 0 & 1-a^3 & -a^2 & 1 & 0 & -a \end{array}\right)\)
Case 1: \(a(1-a) = 0\) iff \(a=0\) or \(a=1\).
- If \(a=0\), \(\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{array}\right)\)
\(R_2 \leftrightarrow R_3\): \(\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & -1 \end{array}\right)\)
Thus, A is invertible when \(a=0\). - If \(a=1\), \(\left( \begin{array}{ccc|ccc} 1 & 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 & 0 & -1 \end{array}\right)\)
\(R_{3}-R_{2}\to R_{3}\), \(\left( \begin{array}{ccc|ccc} 1 & 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & -1 & 0 \end{array}\right)\)
Thus, A is not invertible when \(a=1\).
Case 2: \(a(1-a) \neq 0\) that is \(a \neq 0\) and \(a \neq 1\)
\(R_{3}-\frac{1-a^{3}}{a(1-a)}R_{2}\to R_{3}\). Since \(a \neq 1\), \(1-a \neq 0\), then \(R_{3}-\frac{1+a+a^{2}}{a}R_{2}\to R_{3}\).
\(\left( \begin{array}{ccc|ccc} 1 & a^2 & 2a & 0 & 0 & 1 \\ 0 & a(1-a) & 1-2a & 0 & 1 & -1 \\ 0 & 0 & \frac{a^{3} + a^{2} + a - 1}{a} & 1 & -\frac{1+a+a^{2}}{a} & \frac{a+1}{a} \end{array}\right)\)Since we have know this matrix has two pivots at row 1 column 1 and row 2 column 2 since \(a(1-a)\neq 0\)
Then the matrix is invertible iff \(a^{3} + a^{2} + a - 1 \neq 0\).
And we know A is invertible for \(a=0\) and \(a\neq1\). If \(a=0\), then \(a^3+a^2+a-1\neq 0\)
Thus A is invertible if and only if \(a^3 + a^2 + a - 1 \neq 0\) and \(a\neq 1\). 2. Give the inverse of \(A\) for the values of \(a\) found in 1.
If \(a=0\), then we get \(\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & -1 \end{array}\right)\), thus the inverse of \(A\) is $ \begin{pmatrix} 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & -1 \end{pmatrix}$
If \(a \neq 0\), \(a \neq 1\), and \(p(a)=a^{3}+a^{2}+a-1\neq0\)
We have \(\left( \begin{array}{ccc|ccc} 1 & a^2 & 2a & 0 & 0 & 1 \\ 0 & a(1-a) & 1-2a & 0 & 1 & -1 \\ 0 & 0 & \frac{p(a)}{a} & 1 & -\frac{1+a+a^2}{a} & \frac{a+1}{a} \end{array}\right)\)
Let \(\frac{a}{p(a)}R_{3}\to R_{3}\), then \(\left( \begin{array}{ccc|ccc} 1 & a^2 & 2a & 0 & 0 & 1 \\ 0 & a(1-a) & 1-2a & 0 & 1 & -1 \\ 0 & 0 & 1 & \frac{a}{p(a)} & -\frac{1+a+a^{2}}{p(a)} & \frac{a+1}{p(a)} \end{array}\right)\)
Let \(R_{1}-2aR_{3}\to R_{1}\) and \(R_{2}-(1-2a)R_{3}\to R_{2}\)
\(\left( \begin{array}{ccc|ccc} 1 & a^2 & 0 & -\frac{2a^2}{p(a)} & \frac{2a(1+a+a^2)}{p(a)} & 1-\frac{2a(a+1)}{p(a)} \\ 0 & a(1-a) & 0 & -\frac{a(1-2a)}{p(a)} & 1+\frac{(1-2a)(1+a+a^2)}{p(a)} & -1-\frac{(1-2a)(a+1)}{p(a)} \\ 0 & 0 & 1 & \frac{a}{p(a)} & -\frac{1+a+a^2}{p(a)} & \frac{a+1}{p(a)} \end{array}\right)\)Then we have \(\left( \begin{array}{ccc|ccc} 1 & a^2 & 0 & -\frac{2a^2}{p(a)} & \frac{2a(1+a+a^2)}{p(a)} & \frac{a^3-a^2-a-1}{p(a)} \\ 0 & a(1-a) & 0 & -\frac{a(1-2a)}{p(a)} & \frac{-a^3}{p(a)} & \frac{-a^2(a-1)}{p(a)} \\ 0 & 0 & 1 & \frac{a}{p(a)} & -\frac{1+a+a^2}{p(a)} & \frac{a+1}{p(a)} \end{array}\right)\)
Let \(\frac{1}{a(1-a)}R_{2}\to R_{2}\), then\(\left( \begin{array}{ccc|ccc} 1 & a^2 & 0 & -\frac{2a^2}{p(a)} & \frac{2a(1+a+a^2)}{p(a)} & \frac{a^3-a^2-a-1}{p(a)} \\ 0 & 1 & 0 & -\frac{1-2a}{(1-a)p(a)} & \frac{-a^2}{(1-a)p(a)} & \frac{-a(a-1)}{(1-a)p(a)} \\ 0 & 0 & 1 & \frac{a}{p(a)} & -\frac{1+a+a^2}{p(a)} & \frac{a+1}{p(a)} \end{array}\right)\)
Then \(\left( \begin{array}{ccc|ccc} 1 & a^2 & 0 & -\frac{2a^2}{p(a)} & \frac{2a(1+a+a^2)}{p(a)} & \frac{a^3-a^2-a-1}{p(a)} \\ 0 & 1 & 0 & \frac{2a-1}{(1-a)p(a)} & \frac{-a^2}{(1-a)p(a)} & \frac{a}{p(a)} \\ 0 & 0 & 1 & \frac{a}{p(a)} & -\frac{1+a+a^2}{p(a)} & \frac{a+1}{p(a)} \end{array}\right)\)
Let \(R_{1}-a^{2}R_{2}\to R_{1}\), then \(\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{-a^{2}}{(1-a)p(a)} & \frac{a(2-a^{3})}{(1-a)p(a)} & -\frac{a^{2}+a+1}{p(a)} \\ 0 & 1 & 0 & \frac{2a-1}{(1-a)p(a)} & \frac{-a^{2}}{(1-a)p(a)} & \frac{a}{p(a)} \\ 0 & 0 & 1 & \frac{a}{p(a)} & -\frac{1+a+a^{2}}{p(a)} & \frac{a+1}{p(a)} \end{array}\right)\)
Thus \(A^{-1} = \frac{1}{p(a)} \begin{pmatrix} \frac{-a^2}{1-a} & \frac{a(2-a^3)}{1-a} & -(a^2+a+1) \\ \frac{2a-1}{1-a} & \frac{-a^2}{1-a} & a \\ a & -(1+a+a^2) & a+1 \end{pmatrix}\) where \(p(a) = a^3 + a^2 + a - 1\).
- If \(a=0\), \(\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{array}\right)\)
-