Skip to content

Homework 2

999027873 Yue Shi

Homework 2.pdf

  1. (45 pts) Check whether the following sets \(V\) with the defined operations are vector spaces over \(\mathbb{R}\) or not. If they are vector spaces, prove the properties. If not, what property fails?

    1. \(V = \mathbb{R}_{>0}, \mathbb{F} = \mathbb{Q}\) with \(a \oplus b = a \cdot b ,\,\,\,\, \frac{n}{m}\odot a = \sqrt[m]{a^{n}}\)

      1. The sum is associative and commutative \(\checkmark\)

        \(a\oplus\left(b\oplus c\right)=a\oplus\left(b\cdot c\right)=a\cdot\left(b\cdot c\right )=\left(a\cdot b\right)\cdot c=\left(a\oplus b\right)\oplus c,\checkmark\)

        \(a\oplus b =a\cdot b =b\cdot a =b\oplus a,\checkmark\)​ 2. There exists a neutral element \(\checkmark\)

        The neutral element is \(1\), that is \(1\oplus a=1\cdot a =a,\checkmark\)​ 3. There exists a additive inverse element \(\checkmark\)

        Suppose \(b\) is the additive inverse of \(a\), then \(a\oplus b=a\cdot b=0_{V}\Rightarrow a=b^{-1}\) satisfied \(\checkmark\)​ 4. \(1\cdot v=v,\forall v\in V,\checkmark\)

        \(\frac{1}{1}\odot a=\sqrt[1]{a^{1}}=a,\checkmark\)​ 5. \(\lambda\cdot(v+w)=\lambda\cdot v+\lambda\cdot w,\forall\lambda\in\mathbb{F},\forall v,w\in V,\checkmark\)

        \(\frac{n}{m}\odot(v\oplus w)=\frac{n}{m}\odot(v\cdot w)=\frac{n}{m}\odot(v\cdot w )=\sqrt[m]{(v\cdot w)^{n}}=\sqrt[m]{v^{n}}\cdot\sqrt[m]{w^{n}}=\left(\frac{n}{m}\odot v\right)\oplus\left(\frac{n}{m}\odot w\right),\checkmark\)​ 6. \(\left(\lambda+\mu\right)\cdot v=\lambda\cdot v+\mu\cdot v,\forall\lambda,\mu\in\mathbb{F} ,\forall v\in V,\checkmark\)

        \((\frac{n}{m}+\frac{b}{a})\odot a=(\frac{an+bm}{am})\odot a=\sqrt[am]{a^{an+bm}}= \sqrt[am]{a^{an}\cdot a^{bm}}=\sqrt[am]{a^{an}}\cdot\sqrt[am]{a^{bm}}=\left(\frac{an}{am} \odot a\right)\oplus\left(\frac{bm}{am}\odot a\right)=\left(\frac{n}{m}\odot a\right )\oplus\left(\frac{b}{a}\odot a\right)\checkmark\)​ 7. \(\lambda\cdot\left(\mu\cdot v\right)=\left(\lambda\cdot\mu\right)\cdot v,\forall\lambda ,\mu\in\mathbb{F},\forall v\in V,\checkmark\)

        \(\frac{n}{m}\odot(\frac{b}{a}\odot a)=\frac{n}{m}\odot\sqrt[a]{a^{b}}=\sqrt[m]{(\sqrt[a]{a^{b}})^{n}} =\sqrt[m]{(\sqrt[a]{a})^{bn}}=\sqrt[am]{a^{bn}}=\frac{bn}{am}\odot a=\left(\frac{n}{m} \cdot\frac{b}{a}\right)\odot a,\checkmark\)

      Thus this is a vector space 2. \(V = \mathbb{R}^2, \mathbb{F} = \mathbb{R}\) with \((a_{1}, a_{2}) \oplus (b_{1}, b_{2}) = (a_{1}+ a_{2}- 2, b_{1}+ b_{2}- 3) ,\,\,\, \alpha \odot (a, b) = \alpha (a - 2, b - 3) + (2, 3)\)

      1. The sum is not associative and commutative

        \((a_{1},a_{2})\oplus((b_{1},b_{2})\oplus(c_{1},c_{2}))=\left(a_{1},a_{2}\right)\oplus \left(b_{1}+b_{2}-2,c_{1}+c_{2}-3\right)=\left(a_{1}+a_{2}-2,b_{1}+b_{2}+c_{1}+c_{2} -5\right)\)

        \(\left((a_{1},a_{2}\right)\oplus\left(b_{1},b_{2})\right)\oplus(c_{1},c_{2})=(a_{1} +a_{2}-2,b_{1}+b_{2}-3)\oplus(c_{1},c_{2})=\left(a_{1}+a_{2}+b_{1}+b_{2}-5,c_{1}+ c_{2}-3\right)\)

        Thus it's not associative

        \((a_{1},a_{2})\oplus(b_{1},b_{2})=(a_{1}+a_{2}-2,b_{1}+b_{2}-3)\neq\left(b_{1}+b_{2} -2,a_{1}+a_{2}-3\right)=(b_{1},b_{2})\oplus(a_{1},a_{2})\)

        Thus it's not commutative 2. There doesn't exist a neutral element

        Assume \((b_1,b_2)\) is neutral element, then:

        \((a_{1},a_{2})\oplus(b_{1},b_{2})=(a_{1}+a_{2}-2,b_{1}+b_{2}-3)=\left(a_{1},a_{2} \right)\)

        But it's impossible 3. There doesn't exist a additive inverse element

        Assume \((b_1,b_2)\) is additive inverse, then:

        \((a_{1},a_{2})\oplus(b_{1},b_{2})=(a_{1}+a_{2}-2,b_{1}+b_{2}-3)=\left(0,0\right)\)

        But it's impossible

      Thus this is not a vector space 3. \(V = \mathrm{M}_n(\mathbb{R}), \mathbb{F} = \mathbb{R}\) with \(A \oplus B = 2A + 2B, \,\,\, c \odot A = c A^{T}\)

      Except commutativity of addition and distributivity over vector addition, others are all invalid

      For example:

      The sum is not associative

      \(A\oplus (B\oplus C)=A\oplus (2B+2C)=2A+4B+4C\)

      \(\left(A\oplus\left.B\right)\oplus C=\left(2A+2B\right.\right)\oplus C=4A+4B+2C\)

      Thus it's not vector space

  2. (25 pts) Let \(V\) be an arbitrary real vector space. Prove that either \(V\) has one element or \(V\) has infinitely many elements.

    We know \(0_V\in V\), then if \(0_V\) is the only element in \(V\), then \(V\) has one element, we are done

    If not, we need to prove \(V\) has infinitely many elements.

    Since \(\{0_V\}\subset V\), then \(\exists 0\neq v_1\in V\), then \(\lambda v_1\in V\) where \(\lambda =\mathbb{R}\)

    Since \(|\R|\) is infinite, then \(\lambda v_1\) is infinite, then there are infinitely many elements

  3. (30 pts) Are the following subsets \(S\) of the vector space \(V\) subspaces? Justify

    1. \(S = S_1 \cap S_2\) for \(S_{1} = \{(x, y, z) \in \mathbb{R}^{3} : x + y + z = 0\}\) and \(S_2 = \{(x, y, z) \in \mathbb{R}^3 : 2x - y + 3z = 0\}\) where \(V = \mathbb{R}^3\).

      Take \((x,y,z)\in S\), then \((x,y,z)\in S_1\cap S_2\)

      Thus \(x+y+z=0\) and \(2x-y+3z=0\), then \(3x+4z=0\Rightarrow x=-\frac{4}{3}z,y=\frac{1}{3}z\)

      Then \(S=\{(-4z,z,3z)\in\mathbb{R}^{3}:z\in\mathbb{R}\}\)

      Take \((-4z_{1},z_{1},3z_{1}),(-4z_{2},z_{2},3z_{2})\in S\), then \((-4z_{1},z_{1},3z_{1})+(-4z_{2},z_{2},3z_{2})=(-4\left(z_{1}+z_{2}),z_{1}+z_{2}, 3\left(z_{1}+z_{2}\right)\right)\in S\)

      Take \(\lambda\in\mathbb{R},(-4z,z,3z)\in S\), then \(\lambda\cdot\left(-4z,z,3z\right)=\left(-4\lambda z,\lambda z,3\lambda z\right)\in W\)

      Thus this is a subspace 2. \(S = \{A \in \mathrm{M}_n(\mathbb{R}) : A^T = A\}\) where \(V = \mathrm{M}_n(\mathbb{R})\).

      Take \(A,B\in S\), then \((A+B)^T=A^T+B^T=A+B\), thus \(A+B\in S\)

      Take \(\lambda \in \R,A\in S\), then \((\lambda A)^{T}=\lambda A^{T}=\lambda A\), thus \(\lambda A\in S\)

      Thus this is a subspace 3. \(S = \{p(x) \in \mathbb{R}[x] : p(x) \text{ has only even powers of } x\}\) where \(V = \mathbb{R}[x]\).

      Take \(p(x),q(x)\in S\), then \(p(x)+q(x)\) also has only even powers of \(x\)

      Take \(\lambda \in \R,p(x)\in S\), then \(\lambda p(x)\) also has only even powers of \(x\)

      Thus this is a subspace