Skip to content

Practical Problem

  1. Let \(S \in \mathbb{R}_{+}^{n \times m}\) a column stochastic matrix (i.e. a matrix with non-negative components whose columns sum to one), and \(R \in \mathbb{R}_{+}^{n \times m}\) be a row stochastic matrix. Show that\(\|S\mathbf{v}\|_{1}\leq\|\mathbf{v}\|_{1},\forall\mathbf{v}\in\mathbb{C}^{m}\) and \(\|R\mathbf{v}\|_{\infty}\leq\|\mathbf{v}\|_{\infty},\forall\mathbf{v}\in\mathbb{C} ^{m}\)

    Idea: We want to use the property that \(\sum^n_{x=1}s_{xy}=1\text{ or }\sum^n_{y=1}r_{xy}=1\)
    Then we need to group \(\sum_x\) with \(s_{xy}\). Using triangular inequality
    Grouping \(\sum_yr_{xy}\) needs taking the maximum

    Proof

    For \(S=(s_{xy}),||S\vec{v}||_{1}=\sum_{x=1}^{n}|(S\vec{v})_{x}|=\sum_{x=1}^{n}\left|\sum _{y=1}^{m}s_{xy}v_{y}\right|\leq\sum_{y}\underbrace{\sum_{x}s_{xy}}_{=1}|v_{y}|=\sum _{y}|v_{y}|=||\vec{v}||_{1}\)


    \(\|R\vec{v}\|_{\infty}=\max_{x\in\left\lbrack n\right\rbrack}|\sum_{y=1}^{m}r_{xy} v_{y}|=\left|\sum_{y=1}^{m}r_{iy}v_{y}\right|\leq\sum_{y=1}^{m}r_{iy}\left|v_{y}\right |\) for some \(i\in[n]\)

    Then \(||R\vec{v}||\leq\sum_{y=1}^{m}r_{iy}\max|v_{y}|=\sum_{y=1}^{m}r_{iy}|v_{k}|\) for some \(k\in [m]\)

    Then \(\|R\vec{v}\|_{\infty}\leq|v_{k}|\leq\max_{j\in[n]}|v_{j}|=||\vec{v}||_{\infty}\) since the sum of entries in a row is \(1\)

  2. Let \(M : \tilde{A} \rightarrow B\) be a linear map and denote its transpose map by \(M^T : B \rightarrow A\). Show that \(I \otimes M|\Omega^{A\tilde{A}}\rangle = M^T \otimes I|\Omega^{B\tilde{B}}\rangle\) where \(|\Omega^{A\tilde{A}}\rangle := \sum_{y=1}^{|A|} |yy\rangle^{A\tilde{A}}\) and \(|\Omega^{B\tilde{B}}\rangle := \sum_{y=1}^{|B|} |yy\rangle^{B\tilde{B}}\)

    Proof

    \(I\otimes M^{\tilde{A}\rightarrow B}|\Omega^{A\tilde{A}}\rangle=I\otimes M^{\tilde{A}\rightarrow B}(\sum_{y=1}^{|A|}|yy\rangle^{A\tilde{A}})=\sum_{y=1}^{|A|}|y\rangle^{A}\otimes M^{\tilde{A}\rightarrow B}|y\rangle^{\tilde{A}}\) \(=\sum_{y=1}^{|A|}|y\rangle^{A}\otimes\sum_{x=1}^{|B|}M_{xy}|x\rangle=\sum_{y=1}^{|A|} \sum_{x=1}^{|B|}M_{xy}|yx\rangle\)

    \(M^{T}\otimes I|\Omega^{B\tilde{B}}\rangle=M^{T}\otimes I(\sum_{x=1}^{|B|}|xx\rangle ^{B\tilde{B}})=\sum_{x=1}^{|B|}M^{T}|x\rangle^{B}\otimes|x\rangle^{\tilde{B}}=\sum _{x=1}^{|B|}\sum_{y=1}^{|A|}M_{xy}|y\rangle\otimes|x\rangle\)
    Thus they are equal

  3. Let \(|\psi\rangle, |\phi\rangle \in \mathbb{C}^n\). Show that \(\mathrm{Tr}[|\psi\rangle\langle\phi|] = \langle\phi|\psi\rangle.\)

    Proof

    Assume \(|\psi\rang =\begin{pmatrix} a_1\\a_2\\\vdots\\a_n \end{pmatrix}\) and \(\lang \phi|=\begin{pmatrix} b_1&b_2&\cdots&b_n \end{pmatrix}\), then \(|\psi\rangle\langle\phi|=\begin{pmatrix} a_1b_1&a_1b_2&\cdots&a_1b_n\\ a_2b_1&a_2b_2&\cdots&a_2b_n\\ \vdots&\vdots&\ddots&\vdots\\ a_nb_1&a_nb_2&\cdots&a_nb_n\\ \end{pmatrix}\)

    Then \(\text{Tr}[|\psi\rangle\langle\phi|]=\sum_{i=1}^{n}a_{i}b_{i}\), also \(\langle\phi|\psi\rangle=\sum_{i=1}^{n}a_{i}b_{i}=\text{Tr}[|\psi\rangle\langle\phi |]\)

  4. Show that for any Hermitian operators \(M, \sigma \in \text{Herm}(A)\), with \(\sigma \ge 0\), the following holds: \(\|\sqrt{\sigma} M \sqrt{\sigma}\|_1 \le \|M\|_2 \|\sigma\|_2\)

    Idea: Diagonalize \(M\) and use Cauchy Schwartz inequality and do some computation to show \(\lang \phi_x|\sigma^2|\phi_x\rang\geq \lang \phi_x|\sigma|\phi_x\rang^2\)(Matrix expansion)

    Proof

    Since \(M\) is hermitian, then \(M=\sum_{k}u_{k}|\phi_{k}\rangle\!\langle \phi_{k}|\)
    Then \(||\sqrt{\sigma}M\sqrt{\sigma}||_{1}=||\sqrt{\sigma}(\sum_{k}\mu_{k}|\phi_{k}\rangle \!\langle \phi_{k}|)\sqrt{\sigma}||_{1}\leq \sum_{x}|u_{x}|\cdot||\sqrt{\sigma}|\phi _{x}\rang\lang \phi_{x}\|\sqrt{\sigma}||_{1}\) by triangle inequality
    \(\le\Big(\sum_{k}\mu_{k}^{2}\Big)^{1/2}\Big(\sum_{k}\text{Tr}[|\sqrt{\sigma}|\phi _{x}\rang\lang \phi_{x}|\sqrt{\sigma}|]^{2}\Big)^{1/2}=\|M\|_{2}\Big(\sum_{k}\langle \phi_{k}|\sigma|\phi_{k}\rangle^{2}\Big)^{1/2}\) by Cauchy–Schwarz inequality: \(a_{k}:=|\mu_{k}|,\,b_{k}:=\|v_{k}\|^{2},\,\,\,\,\sum_{k} a_{k} b_{k} \le \left(\sum_{k} a_{k}^{2}\right)^{1/2}\left(\sum_{k} b_{k} ^{2}\right)^{1/2}\) and since \(\sqrt{\sigma}|\phi _{x}\rang\lang \phi_{x}\|\sqrt{\sigma}\) is positive
    We know \(||\sigma||_2=\text{Tr}[|\sigma|^2]^\frac{1}{2}=\text{Tr}[\sigma^2]^\frac{1}{2}=(\sum_x\lang \phi_x|\sigma^2|\phi_x\rang)^\frac{1}{2}\) and \(\lang\phi_x|\sigma^2|\phi_x\rang =\sum_y\lang \phi_x|\sigma\phi_y\rang\lang \phi_y|\sigma|\phi_x\rang\geq \lang \phi_x|\sigma|\phi_x\rang^2\)
    Hence \(\|\sqrt{\sigma} M \sqrt{\sigma}\|_1 \le \|M\|_2\,\|\sigma\|_2\).

  5. Let \(A\) and \(B\) be two Hilbert spaces, \(M, N \in \text{Pos}(A)\), and \(p, q \in [1, \infty)\) such that \(\frac{1}{p} + \frac{1}{q} = 1\).
    Use the Hölder inequality of the Schatten norm to show that \(\text{Tr}[MN] \leq \frac{1}{p}\text{Tr}[M^{p}] + \frac{1}{q}\text{Tr}[N^{q}]\) with equality if and only if \(M^p = N^q\).

    Idea: First coping with the problem that \(\text{Tr}[MN]\neq \text{Tr}[|MN|]=||MN||_1\)(using \(\frac{1}{2}=\frac{1}{2p}+\frac{1}{2q}\))
    Take log on holder inequality, then using Jensen's inequality and log is increasing to get it.
    Then we can also get two combined inequality by log. Remember two condition: \(M^p=cN^q\) and \(\text{Tr}[M^p]=\text{Tr}[N^q]\) to get the result.

    Proof

    1. We prove \(\text{Tr}[MN]\leq\frac{1}{p}\text{Tr}[M^{p}]+\frac{1}{q}\text{Tr}[N^{q}]\)

      \(\operatorname{Tr}[MN]=\|M^{1/2}N^{1/2}\|_{2}^{2}\le \|M^{1/2}\|_{2p}^{2}\,\|N^{1/2} \|_{2q}^{2}\text{ where }\tfrac12=\tfrac{1}{2p}+\tfrac{1}{2q}\;(\Leftrightarrow\; \tfrac1p+\tfrac1q=1)\)

      \(=\Big(\operatorname{Tr}\!\big[(M^{1/2})^{2p}\big]\Big)^{1/p}\Big(\operatorname{Tr}\!\big[(N^{1/2})^{2q}\big]\Big)^{1/q} =\big(\operatorname{Tr}[M^{p}]\big)^{1/p}\big(\operatorname{Tr}[N^{q}]\big)^{1/q}\)
      Thus we have \(\text{Tr}[MN]\leq\text{Tr}[M^{p}]^{\frac{1}{p}}\cdot\text{Tr}[N^{q}]^{\frac{1}{q}}\) by Hölder inequality
      We take log on both sides \(\Rightarrow \log(\text{Tr}[MN]) \leq \log(\text{Tr}[M^p]^{\frac{1}{p}}) + \log(\text{Tr}[N^q]^{\frac{1}{q}})\) \(= \frac{1}{p}\log(\text{Tr}[M^{p}]) + \frac{1}{q}\log(\text{Tr}[N^{q}])\) \(\leq \log \left(\frac{1}{p}\text{Tr}[M^{p}] + \frac{1}{q}\text{Tr}[N^{q}]\right)\) because log is concave on \((0, \infty)\) and \(\frac{1}{p} + \frac{1}{q} = 1\), by Jensen's inequality

      Then we get \(\text{Tr}[MN] \leq \frac{1}{p} \text{Tr}[M^p] + \frac{1}{q} \text{Tr}[N^q]\) since \(\log\) is increasing 2. NTP: \(\text{Tr}[MN] = \frac{1}{p}\text{Tr}[M^{p}] + \frac{1}{q}\text{Tr}[N^{q}]\) iff \(M^p = N^q\)

      \(\Leftarrow)\) \(\frac{1}{p}\text{Tr}[M^{p}]+\frac{1}{q}\text{Tr}[N^{q}]=(\frac{1}{p}+\frac{1}{q} )\text{Tr}[M^{p}]=\text{Tr}[M^{p}]\)
      By Hölder inequality: \(\text{Tr}[MN]\le\text{Tr}[M^{p}]^{\frac{1}{p}}\cdot\text{Tr}[N^{q}]^{\frac{1}{q}} =\text{Tr}[M^{p}]^{\frac{1}{p}+\frac{1}{q}}=\text{Tr}[M^{p}]\)

      Then \(\text{Tr}[MN] = \frac{1}{p}\text{Tr}[M^{p}] + \frac{1}{q}\text{Tr}[N^{q}]\) equality holds when \(\text{Tr}[MN]=\text{Tr}[M^{p}]\)
      Since \(\frac{1}{p}+ \frac{1}{q}= 1 \implies \frac{1}{q}= 1 - \frac{1}{p}= \frac{p-1}{p} \implies q = \frac{p}{p-1}\)
      \(\text{Tr}[MN]=\text{Tr}[M\cdot M^{\frac{p}{q}}]=\text{Tr}[M^{\frac{p+q}{q}}]=\text{Tr} [M^{\frac{p+\frac{p}{p-1}}{\frac{p}{p-1}}}]=\text{Tr}[M^{p}]\)

      \(\Rightarrow\))

      We have \(\text{Tr}[MN] = \frac{1}{p}\text{Tr}[M^{p}] + \frac{1}{q}\text{Tr}[N^{q}]\) and by Hölder inequality \(\text{Tr}[MN]\le\text{Tr}[M^{p}]^{\frac{1}{p}}\cdot\text{Tr}[N^{q}]^{\frac{1}{q}}\)

      Also in the beginning we have \(\log\left(\text{Tr}[M^{p}]^{\frac{1}{p}}\cdot\text{Tr}[N^{q}]^{\frac{1}{q}}\right )\leq \log \left(\frac{1}{p}\text{Tr}[M^{p}] + \frac{1}{q}\text{Tr}[N^{q}]\right)\) by concavity

      Then \(\text{Tr}[M^{p}]^{\frac{1}{p}}\cdot\text{Tr}[N^{q}]^{\frac{1}{q}}\leq\frac{1}{p} \text{Tr}[M^{p}]+\frac{1}{q}\text{Tr}[N^{q}]\) by concavity

      Thus we have \(\text{Tr}[MN] \;\le\; \underbrace{\text{Tr}[M^{p}]^{\frac{1}{p}}\text{Tr}[N^{q}]^{\frac{1}{q}}} _{\text{Hölder bound}}\;\le\; \underbrace{\frac{1}{p}\text{Tr}[M^{p}] + \frac{1}{q}\text{Tr}[N^{q}]} _{\text{Young RHS}}\)
      Since hypothesis, all three quantities must be equal.

      • Equality in the concavity step (strict concavity of log) forces \(\text{Tr}[M^{p}] = \text{Tr}[N^{q}].\)
      • Equality in Hölder for Schatten norms (with \(M,N\in\text{Pos}(A)\)) implies there exists \(c\ge 0\) such that \(M^{p}= c\,N^{q}\)

      Taking traces of this relation gives \(\text{Tr}[M^{p}] = c\,\text{Tr}[N^{q}]\). Using \(\text{Tr}[M^{p}] = \text{Tr}[N^{q}]\) yields \(c=1\).

      Hence \(M^{p} = N^{q}.\)

  6. Let \(\left|\Phi^{A B}\right\rangle:=\frac{1}{\sqrt{d}} \sum_{z \in[d]}|z z\rangle\) be a 2-qudit (normalized) maximally entangled state in \(A B \cong \mathbb{C}^{d} \otimes \mathbb{C}^{d}\). Consider a family of \(d^{2}\) states in \(A B\) defined by \(\left|\psi_{xy}^{AB}\right\rangle=T^{x}\otimes S^{y}\left|\Phi^{AB}\right\rangle ,\,x,y\in[d]\) where \(T\) and \(S\) are the phase and shift operators defined by \(T|z\rangle=e^{i \frac{2 \pi z}{d}}|z\rangle\) and \(S|z\rangle=|z \oplus 1\rangle\), where \(\oplus\) is the plus modulo \(d\), and \(z \in[d]\).

    1. Show that \(\left\{\left|\psi_{x y}^{A B}\right\rangle\right\}_{x, y \in[d]}\) is an orthonormal basis of \(A B\).

      Proof

      \(|\psi_{xy}^{AB}\rangle= T^x\otimes S^y\,|\Phi^{AB}\rangle= \frac{1}{\sqrt d}\sum_{z\in[d]} T^x|z\rangle \otimes S^y|z\rangle= \frac{1}{\sqrt d}\sum_{z\in[d]} e^{i\frac{2\pi x z}{d}}\,|z\rangle\otimes|z\oplus y\rangle\)

      Then $\langle \psi_{x'y'}|\psi_{xy}\rangle = \frac{1}{d}\sum_{z',z\in[d]}e^{-i\frac{2\pi x' z'}{d}}e^{i\frac{2\pi x z}{d}}\langle z'|\langle z'!\oplus! y'|\,\big(|z\rangle\otimes|z!\oplus! y\rangle\big) \ = \frac{1}{d}\sum_{z\in[d]}e^{i\frac{2\pi z (x-x')}{d}}\langle z!\oplus! y'|z!\oplus! y\rangle = \frac{1}{d}\,\delta_{y,y'}\sum_{z\in[d]}e^{i\frac{2\pi z (x-x')}{d}} = \frac{1}{d}\,\delta_{y,y'}\sum_{z}e^{i\frac{2\pi z (x-x')}{d}} $

      \(= \frac{1}{d}\,\delta_{y,y'} \sum_{z} e^{i\frac{2\pi z (x-x')}{d}}\quad\begin{cases}\text{if } x'=x,\ \langle \psi_{xy}|\psi_{x'y'}\rangle=\delta_{y,y'} \\\text{if } x'\neq x,\ \langle \psi_{xy}|\psi_{x'y'}\rangle=0\end{cases}\) 2. Show that the reduced density matrix of \(\left|\psi_{x y}^{A B}\right\rangle\) is the maximally mixed state for all \(x, y \in[d]\).

      Proof

      \(\operatorname{Tr}_B\!\left[\,|\psi_{xy}^{AB}\rangle\langle\psi_{xy}^{AB}|\,\right]= \operatorname{Tr}_B\!\left[\frac{1}{d}\sum_{z,z'\in[d]} e^{i\frac{2\pi x (z-z')}{d}}\big(|z\rangle\langle z'|\big)\otimes\big(|z\oplus y\rangle\langle z'\oplus y|\big)\right]\)

      \(= \frac{1}{d}\sum_{z,z'} e^{i\frac{2\pi x (z-z')}{d}} |z\rangle\langle z'|\,\operatorname{Tr}\!\left[|z\oplus y\rangle\langle z'\oplus y|\right]= \frac{1}{d}\sum_{z} |z\rangle\langle z|= \frac{1}{d}\,I\) 3. Find a protocol for faithful teleportation of a qudit from Alice's lab to Bob's lab. Assume that the joint measurement that Alice performs on her two qudits is a basis measurement in the basis \(\left\{\left|\psi_{x y}^{A B}\right\rangle\right\}_{x, y \in[d]}\).
      What are the unitary operators performed by Bob? How many classical bits (cbits) Alice transmits to Bob?

      Idea: Discuss about initial state, measurement, probability, post-measurement state, then define unitary.

      Proof

      Initial state \(|\psi\rangle^{A^{\prime}AB}=|\psi\rangle^{A^{\prime}}\otimes|\Phi\rangle^{AB}=|\psi \rangle^{A^{\prime}}\otimes\frac{1}{\sqrt{d}}\sum_{z^{\prime}\in[d]}|z^{\prime}z^{\prime} \rangle^{AB}.\)

      Measurements \(\Pi_{x,y}^{A^{\prime}A}=|\psi_{xy}^{A^{\prime}A}\rangle\langle\psi_{xy}^{A^{\prime}A} |,\sum_{x,y}\Pi_{x,y}^{A^{\prime}A}=I^{A^{\prime}A},\Pi_{x,y}\Pi_{x^{\prime},y^{\prime}} =\delta_{x,x^{\prime}}\delta_{y,y^{\prime}}\Pi_{x,y}.\)

      Probability \(P(x,y)=\Pr(x,y)=\langle\psi|^{A^{\prime}AB}\,\Pi_{x,y}^{A^{\prime}A}\otimes I^{B} \,|\psi\rangle^{A^{\prime}AB}=\frac{1}{d^{2}}\)

      Post‑measurement state \(|\varphi_{x,y}^{A^{\prime}AB}\rangle=\frac{1}{\sqrt{P(x,y)}}\,\Big(\Pi_{x,y}^{A^{\prime}A} \otimes I^{B}\Big)\,|\psi\rangle^{A^{\prime}AB}.\)

      Assume \(|\psi\rangle^{A'}=\sum_{t\in[d]}\alpha_{t}|t\rangle.\)

      Then \(|\varphi^{A'AB}_{x,y}\rangle= d\,|\psi^{A'A}_{x y}\rangle\otimes\Big(\langle \psi ^{A'A}_{x y}|\otimes I^{B}\Big)\,|\psi\rangle^{A'AB}.\)

      \(= d\,|\psi^{A'A}_{x y}\rangle\otimes \left(\frac{1}{d}\sum_{t,z'z\in[d]}\,\omega^{-x z}\,\alpha_{z}\lang z|t\rang\lang z\oplus y|z'\rang|z'\rang^{B}\right)\)

      \(=d|\psi_{xy}^{A^{\prime}A}\rangle\otimes\frac{1}{d}\sum_{z}\alpha_{z}\omega^{-xz} |z\oplus y\rangle^{B}= |\psi^{A'A}_{x y}\rangle \otimes \Big(S^{y}T^{-x}|\psi\rangle ^{B}\Big)\) where \(|\psi\rangle=\sum_{z}\alpha_z|z\rangle\).

      Thus \(U_{x,y}=(S^{y}T^{-x})^{-1}=T^{x}S^{-y}.\) Note: Reserve \(|\psi_{xy}^{A^{\prime}A}\rangle\) can reduce the complexity of computation

      Alice sends \((x,y) \in [d]\times[d]\), which is \(2 \log_2 d\) cbits.

      Since \(4 \ \rightarrow\ 2\ \text{b.ts}\), \(9 \ \rightarrow\ \log_2 9\ \text{b.ts}\) and \(\log d^{2} \ \Rightarrow\ 2\log_2 d\ \text{b.ts}\)

  7. Let \(\rho \in \mathcal{D}(A)\) be a density matrix.

    1. Show that \(\sqrt{\rho}\otimes I^{\tilde{A}}|\Omega^{A\tilde{A}}\rangle\) is a purification of \(\rho\).

      Proof

      First \(\sqrt{\rho}\otimes I|\Omega\rangle=(\sqrt{\rho}\otimes I)(\sum_{x=1}^{|A|}|x\rangle |x\rangle ))=\sum_{x=1}^{|A|}\sqrt{\rho}|x\rangle\otimes|x\rangle=|\psi^{A\tilde{A}}\rangle\)

      Then \(\text{Tr}_{\tilde{A}}(|\psi^{A\tilde{A}}\rangle\langle\psi^{A\tilde{A}}|) = \text{Tr}_{\tilde{A}} ((\sum_{x=1}^{|A|}\sqrt{\rho}| x\rangle \otimes |x\rangle) (\sum_{y=1}^{|A|}\langle y|\sqrt{\rho}\otimes \langle y |))\) since \(\rho\) is hermitian
      \(= \text{Tr}_{\tilde{A}}(\sum_{x,y}\sqrt{\rho}|x\rangle \langle y| \sqrt{\rho}|x\rangle \langle y|) = \sum_{x,y}^{|A|}\sqrt{\rho}|x\rangle \langle y| \sqrt{\rho}\,\text{Tr} ( |x\rangle \langle y|)\)
      \(= \sum_{x,y} \sqrt{\rho} |x\rangle \langle y| \sqrt{\rho} \otimes \delta_{x,y}\)
      \(= \sum_{x} \sqrt{\rho}|x\rangle \langle x| \sqrt{\rho}= \sqrt{\rho}\sum_{x} |x\rangle \langle x| \sqrt{\rho} = \rho\) 2. Show that \(|\psi^{AB}\rangle \in AB\) and \(|\phi^{AC}\rangle \in AC\) (assuming \(|B| \leq |C|\) ) are two purifications of \(\rho \in \mathcal{D}(A)\) if and only if there exists an isometry matrix \(V: B \to C\) such that \(|\phi^{AC}\rangle = I^{A}\otimes V^{B \to C}|\psi^{AB}\rangle.\)

      Idea: \(\Leftarrow\)) Note \(I^A\otimes V^{B\to C}\) is a whole(conjugate)

      \(\Rightarrow\)) Discuss that we can use schmidt decomposition in the same basis of same space. Then define \(V\) and prove it's isometry(\(\lang Vv|Vv\rang =\lang v|v\rang\))

      Proof

      \(\Rightarrow\))

      First we prove it's possible to decompose like this \(|\psi^{AB}\rangle=\sum_{x=1}^{|A|}\sqrt{p_{x}}|u_{x}^{A}\rangle|v_{x}^{B}\rangle\) and \(|\phi^{AC}\rangle=\sum_{x=1}^{|A|}\sqrt{q_{x}}|u_{x}^{A}\rangle|z_{x}^{C}\rangle\)
      By schmidt decomposition: \(|\psi^{AB}\rangle=\sum_{x=1}^{|A|}\sqrt{p_{x}}|u_{x}^{A}\rangle|v_{x}^{B}\rangle\), then \(\rho^{A}=\text{Tr}_{B}[\psi^{AB}]=\sum_{x=1}^{|A|}p_{x}|u_{x}\rangle\langle u_{x} |^{A}\)
      Then \(|u_x\rang\) are eigenvectors of \(\rho\) with eigenvalues \(p_x\).
      Since the reduced density matrix of \(|\psi\rang\) and \(|\phi\rang\) is \(\rho\), then the eigenvalue should be same.
      If all eigenvalues of \(\rho\) are distinct, then the eigenbasis is unique since eigenbasis is orthonormal basis. Then the orthonomal basis in \(A\) should be same
      If there are some repeated eigenvalues, the eigenbasis are not unique. Then we are allowed to choose the same one.

      Thus by schmidt decomposition: \(|\phi^{AC}\rangle=\sum_{x=1}^{|A|}\sqrt{q_{x}}|u_{x}^{A}\rangle|z_{x}^{C}\rangle\) and \(\rho^{A}=\text{Tr}_{C}[\phi^{AC}]=\sum_{x=1}^{|A|}q_{x}|u_{x}\rangle\langle u_{x} |^{A}\)

      Then \(\sum_{x=1}^{|A|}p_{x}|u_{x}\rangle\langle u_{x}|^{A}=\sum_{x=1}^{|A|}q_{x}|u_{x} \rangle\langle u_{x}|^{A}\), then \(p_x=q_x\)

      Then \(|\phi^{AC}\rangle=\sum_{x=1}^{|A|}\sqrt{p_{x}}|u_{x}^{A}\rangle|z_{x}^{C}\rangle\)

      Also \((I^{A}\otimes U)|\psi^{AB}\rangle=(I^{A}\otimes U)\sum_{x=1}^{|A|}\sqrt{p_{x}}|u _{x}^{A}\rangle|v_{x}^{B}\rangle=\sum_{x=1}^{|A|}\sqrt{p_{x}}|u_{x}^{A}\rangle\otimes U|v_{x}^{B}\rangle\)

      We define \(U:B\to C\) s.t. \(U|v_{x}^{B}\rangle=|z_{x}^{C}\rangle\) for all \(x\), let show this is a isometry.

      Since \(\langle Uv|Uv\rangle=\langle\sum_{x}Uc_{x}v_{x}|\sum_{x}Uc_{x}v_{x}\rangle=\sum_{x} \langle Uc_{x}v_{x}|Uc_{x}v_{x}\rangle+\sum_{x\neq y}\langle Uc_{x}v_{x}|Uc_{y}v_{y} \rangle=\sum_{x}||c_x||^2\langle z_{x}|z_{x}\rangle+\sum_{x\neq y}\bar c_xc_y\langle z_{x}|z_{y}\rangle =\sum_x||c_x||^2+0=\sum_x||c_x||^2=\langle v|v\rangle\), thus \(U\) is a isometry.

      Thus we complete the proof

      \(\Leftarrow\)) Assume \(|\psi^{AB}\rangle\) is a purification of \(\rho\), then \(\text{Tr}_B[|\psi^{AB}\rang\lang \psi^{AB}|]=\rho\)

      Since \(|\phi^{AC}\rangle = I^{A}\otimes V^{B \to C}|\psi^{AB}\rangle\), then \(\text{Tr}_{C}(|\phi^{AC}\rangle\langle\phi^{AC}|)=\text{Tr}_{C}\left(I^{A}\otimes V^{B\to C}\psi^{AB}\cdot\left(I^{A}\otimes V^{B\to C}\right)^{*}\right)=\text{Tr} _{B}\left(I^{A}\otimes I\psi^{AB}\right)=\text{Tr}_{B}(\psi^{AB})=\rho\) 3. Use Part 2 to provide alternative (simpler!) proof of the claim in Exercise 2.27.
      Exercise 2.27. Let \(\left\{\left|\psi_{x}\right\rangle, p_{x}\right\}_{x \in[m]}\) and \(\left\{\left|\phi_{y}\right\rangle, q_{y}\right\}_{y \in[n]}\) be two ensembles of quantum states in A with \(m \geq n\). Show that they correspond to the same density matrix \(\rho:=\sum_{x \in[m]}p_{x}\left|\psi_{x}\right\rangle \langle\psi_{x}|= \sum_{y \in[n]}q_{y}| \phi_{y}\rangle\left\langle\phi_{y}\right|\) if and only if there exists an \(m \times n\) isometry matrix \(V=\left(v_{x y}\right)\) (i.e. \(V^{*} V=I_{n}\)) such that \(\sqrt{p_{x}}\left|\psi_{x}\right\rangle=\sum_{y \in[n]} v_{x y} \sqrt{q_{y}}\left|\phi_{y}\right\rangle \quad \forall x \in[m] .\)

      Idea: Define \(|\Psi\rang \text{ and }|\Phi\rang\)(schmidt decomposition) and using (2)

      Proof

      Using Schmidt Decomposition

      Define purifications on orthonormal bases \(\{|y\rangle\}_{y=1}^n\) and \(\{|x\rangle\}_{x=1}^m\):
      \(|\Psi^{AB}\rangle=\sum_{y=1}^n \sqrt{q_y}\,|\phi_y\rangle^A\otimes|y\rangle^B,\quad|\Phi^{AC}\rangle=\sum_{x=1}^m \sqrt{p_x}\,|\psi_x\rangle^A\otimes|x\rangle^C.\)
      Then easily \(\operatorname{Tr}_B|\Psi\rangle\langle\Psi|=\sum_{y}q_y|\phi_y\rangle\langle\phi_y|,\quad\operatorname{Tr}_C|\Phi\rangle\langle\Phi|=\sum_{x}p_x|\psi_x\rangle\langle\psi_x|.\)

      \(\Rightarrow\)) Since \(n=|B|\le |C|=m\), by Part 2 there exists an isometry \(V:B\to C\) such that
      \(|\Phi^{AC}\rangle=(I^A\otimes V^{B\to C})\,|\Psi^{AB}\rangle.\)
      Since this, then \(V^{B\to C}=\sum_{x\in[m]}\sum_{y\in [n]}v_{xy}|x\rang \lang y|\), then \(V|y\rangle=\sum_{x=1}^m v_{xy}\,|x\rangle\).
      Then \(\sum_{x=1}^{m} \sqrt{p_{x}}\,|\psi_{x}\rangle\otimes|x\rangle=\sum_{y=1}^{n} \sqrt{q_{y}} \,|\phi_{y}\rangle\otimes V|y\rangle=\sum_{x=1}^{m} \Big(\sum_{y=1}^{n} v_{xy}\sqrt{q_{y}} \,|\phi_{y}\rangle\Big)\otimes|x\rangle\)
      Then \(\sqrt{p_{x}}\,|\psi_x\rangle=\sum_{y=1}^n v_{xy}\sqrt{q_{y}}\,|\phi_y\rangle\quad\forall x\in[m]\)

      \(\Leftarrow\)) If there exists an \(m\times n\) isometry \(V=(v_{xy})\) with the above relations, then
      \(\sum_{x}p_{x} |\psi_{x}\rangle\langle\psi_{x}|= \sum_{x}\sum_{y,y'}v_{xy}v_{xy'} ^{*}\sqrt{q_{y}q_{y'}}\,|\phi_{y}\rangle\langle\phi_{y'}|= \sum_{y,y'}(V^{\ast} V )_{y'y}\sqrt{q_{y}q_{y'}}\,|\phi_{y}\rangle\langle\phi_{y'}|= \sum_{y}q_{y} |\phi _{y}\rangle\langle\phi_{y}|\) since \(V^\ast V=I_n\).
      Hence the ensembles yield the same density matrix.

  8. Let \(A \cong \mathbb{C}^n\) be a Hilbert space \(A\), and let \(\text{Herm}(A)\) be the Hilbert space consisting of all Hermitian matrices on \(A\). Give an example of a basis (not necessarily orthogonal) of \(\text{Herm}(A)\) consisting of pure density matrices in \(\mathfrak{D}(A)\).

    Solution

    Claim: \(\text{Herm}(A) = \text{span} \left\{\left\{|x\rangle\langle x|\right\}_{x=1}^{n}\cup \left\{\left (|x\rangle+|y\rangle\right)\left(\langle x|+\langle y|\right)\right\}_{x \neq y}\cup \left\{\left(|x\rangle+i|y\rangle\right)\left(\langle x|-i\langle y|\right)\right \}_{x \neq y}\right\}\)


    Another Problem in Practical Exam

    Give an example of an informationally complete POVM in \(\mathrm{Herm}(A)\).

    \(A=\sum_{i}a_{i}|e_{i}\rangle\langle e_{i}|+\sum_{i<j}b_{ij}(|e_{i}\rangle\langle e_{j}|+|e_{j}\rangle\langle e_{i}|)+\sum_{i>j}c_{ij}\cdot i\cdot(|e_{i}\rangle\langle e_{j}|-|e_{j}\rangle\langle e_{i}|)\)
    Let \(\Lambda_{\alpha_{1i}}=|e_{i}\rangle\langle e_{i}|,\Lambda_{\alpha_{2ij}}=\left(|e_{i}\rangle +|e_{j}\rangle\right)\left(\langle e_{j}|+\langle e_{i}|\right),\Lambda_{\alpha_{3ij}}= \left(i|e_{i}\rangle+|e_{j}\rangle\right)\left(\langle e_{j}|-i\langle e_{i}|\right )\)
    Then let \(\Lambda=\sum_{i}\Lambda_{\alpha_{1i}}+\sum_{i<j}\Lambda_{\alpha_{2ij}}+\sum_{i>j} \Lambda_{\alpha_{3ij}}=\sum_\alpha\Lambda_\alpha\)

    We define \(\tilde{\Lambda}_\alpha=\Lambda^{-\frac{1}{2}}\Lambda_\alpha\Lambda^{-\frac{1}{2}}\) is a IC-POVM since it spans the \(\text{Herm}(A)\) and \(\sum_\alpha\tilde{\Lambda}_\alpha=I\)

  9. Suppose Alice and Bob share the state \(|\psi^{AB}\rangle = \frac{1}{2}|00\rangle + \frac{\sqrt{3}}{2}|11\rangle\). Show that there exists a 2-outcome (basis) measurement that Alice can perform, such that with some probability greater than zero, the state of Alice and Bob after the measurement becomes the maximally entangled state \(|\Phi_{+}^{AB}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)\).

    Idea: Define \(M_0\) and calculate \(M_1\), then use it. Remember the probability formula for generalized measurement is \(p_0=\lang \psi |M_0^*M_0\otimes I^B|\psi\rang\) and post-measurement state is \(\frac{1}{\sqrt{p_0}}M_0\otimes I^B|\psi\rang\)

    Proof

    We cannot perform element projection since \(p_{x} = |\psi\rangle\langle\psi|\), then \(p_{x}\otimes I(\frac{1}{2}|00\rangle + \frac{\sqrt{3}}{2}|11\rangle)=|\psi\rang\otimes(...)\) is not entangled

    Alice performs a 2-outcome generalized measurement: \(M_{0}= \begin{pmatrix} 1 & 0 \\[2 pt] 0 & \tfrac{1}{\sqrt{3}} \end{pmatrix},M_{1}=\sqrt{I-M_{0}^{*}M_{0}}= \begin{pmatrix} 0 & 0 \\[2 pt] 0 & \sqrt{\tfrac23} \end{pmatrix}\)
    This is a valid 2-outcome POVM since \(M_{0}^{*} M_{0}+M_{1}^{*} M_{1}=I\).
    The probability is \(p_{0} \;=\; \|(M_{0}\otimes I)|\psi\rangle\|^{2}= \left(\tfrac{1}{2}\right)^{2} + \left(\tfrac{\sqrt{3}}{2}\cdot\tfrac{1}{\sqrt{3}}\right)^{2}= \tfrac{1}{4}+\tfrac {1}{4}=\tfrac{1}{2}\)
    The post-measurement state is \(\frac{(M_{0}\otimes I)\,|\psi^{AB}\rangle}{\sqrt{p_{0}}}=\frac{|00\rangle+|11\rangle}{\sqrt{2}} =|\Phi_{+}^{AB}\rangle.\)

  10. Consider four qubit systems \(A, B, C\), and \(D\), in the double-singlet state \(|\Psi_{-}^{AB}\rangle \otimes |\Psi_{-}^{CD}\rangle\).

    1. Show that a joint Bell measurement on system \(BC\) generates a maximally entangled state on system \(AD\) (along with another maximally entangled state on system \(BC\)) for all four possible outcomes of the measurement.

      Idea: Express \(|\Psi_{-}^{AB}\rangle \otimes |\Psi_{-}^{CD}\rangle\) and regroup in \(AD\otimes BC\), then express it in bell basis and perform bell measurement

      Proof

      Let \(|\Phi_{\pm}\rangle=\tfrac{1}{\sqrt{2}}(|00\rangle\pm|11\rangle),|\Psi_{\pm}\rangle =\tfrac{1}{\sqrt{2}}(|01\rangle\pm|10\rangle).\)
      Then \(|\Psi_-^{AB}\rangle|\Psi_-^{CD}\rangle=\tfrac{1}{2}\big(|0_A1_B0_C1_D\rangle-|0_A1_B1_C0_D\rangle-|1_A0_B0_C1_D\rangle+|1_A0_B1_C0_D\rangle\big).\)
      \(=\tfrac{1}{2}\big(|01\rangle_{AD}|10\rangle_{BC}-|00\rangle_{AD}|11\rangle_{BC}- |11\rangle_{AD}|00\rangle_{BC}+|10\rangle_{AD}|01\rangle_{BC}\big).\)
      Bell basis: \(|00\rangle=\tfrac{1}{\sqrt{2}}(|\Phi_{+}\rangle+|\Phi_{-}\rangle),|11\rangle=\tfrac {1}{\sqrt{2}}(|\Phi_{+}\rangle-|\Phi_{-}\rangle),|01\rangle=\tfrac{1}{\sqrt{2}}(| \Psi_{+}\rangle+|\Psi_{-}\rangle),|10\rangle=\tfrac{1}{\sqrt{2}}(|\Psi_{+}\rangle -|\Psi_{-}\rangle),\)
      Then \(|\Psi_-^{AB}\rangle|\Psi_-^{CD}\rangle=\tfrac{1}{2}\Big(-|\Phi_+^{AD}\rangle|\Phi_+^{BC}\rangle+|\Phi_-^{AD}\rangle|\Phi_-^{BC}\rangle+|\Psi_+^{AD}\rangle|\Psi_+^{BC}\rangle-|\Psi_-^{AD}\rangle|\Psi_-^{BC}\rangle\Big).\)

      So \(|\Phi_+\rangle^{BC} \rightarrow |\Phi_+\rangle^{AD}\), \(|\Phi_-\rangle^{BC} \rightarrow |\Phi_-\rangle^{AD}\), \(|\Psi_+\rangle^{BC} \rightarrow |\Psi_+\rangle^{AD}\), \(|\Psi_-\rangle^{BC} \rightarrow |\Psi_-\rangle^{AD}\) each with probability \(\tfrac{1}{4}\). 2. Show that the singlet state in \(AD\) can be generated by quantum teleportation between system \(BC\) and system \(D\).

      Idea: The singlet state is \(|\Psi_{-}\rang^{AD}\), then we need to measure on \(BC\) and send classical message to \(D\), then perform unitary. It's better to remember the order

      Proof

      Using Pauli matrices \(\sigma_{1}= \begin{pmatrix} 0 & 1 \\[2 pt] 1 & 0 \end{pmatrix},\sigma_{2}: \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},\sigma_{3}: \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\)

      • First apply a Bell measurement on \(BC\). Then send a classical outcome \(x\) to \(D\):

      If \(BC\) gets \(|\Psi_{-}\rangle\), send \(0\)

      If \(BC\) gets \(|\Phi_{-}\rangle\), send \(1\)

      If \(BC\) gets \(|\Phi_{+}\rangle\), send \(2\)

      If \(BC\) gets \(|\Psi_{+}\rangle\), send \(3\) - Corrections at \(D\) (Pauli-type operators \(\sigma_0,\sigma_1,\sigma_2,\sigma_3\) on \(D\)):

      If \(D\) gets \(0\), apply \(\sigma_0\): \((I^{A}\!\otimes\!\sigma_{0}^{D})\,|\Psi_{-}\rangle^{AD}=|\Psi_{-}\rangle^{AD}\)

      If \(D\) gets \(1\), apply \(\sigma_1\): \((I^{A}\!\otimes\!\sigma_{1}^{D})\,|\Phi_{-}\rangle^{AD}=|\Psi_{-}\rangle^{AD}\)

      If \(D\) gets \(2\), apply \(\sigma_{2}\): \((I^{A}\!\otimes\!\sigma_{2}^{D})\,|\Phi_{+}\rangle^{AD}=i|\Psi_{-}\rangle^{AD}\)

      If \(D\) gets \(3\), apply \(\sigma_{3}\): \((I^{A}\!\otimes\!\sigma_{3}^{D})\,|\Psi_{+}\rangle^{AD}=-|\Psi_{-}\rangle^{AD}\)

  11. Suppose Alice and Bob share a composite quantum system in the state \(\rho \in \mathcal{D}(A B)\). Alice performs a measurement on her system described by a POVM \(\left\{\Lambda_{x}\right\}_{x=1}^{m}\), and record the outcome \(x\) in a classical system \(X\) (with \(|X|=m)\). Show that the post-measurement state can be expressed as a classical-quantum state of the form \(\sigma^{X B}=\sum_{x=1}^{m} p_{x}|x\rangle\langle x|^{X} \otimes \sigma_{x}^{B} .\)
    Express the probabilities \(p_{x}\), and density matrices \(\sigma_{x}^{B}\), in terms of \(\Lambda_{x}\) and \(\rho^{A B}\).

    Idea: Directly express \(\sigma^{XB}\) where in \(B\) there is the postmeasurement state: \(\mathrm{Tr}_{A}\left\lbrack \left(\sqrt{\Lambda_{x}}\otimes I_{B}\right)\rho^{AB}\left(\sqrt{\Lambda_{x}}\otimes I_{B}\right)^{*}\right\rbrack\)

    Proof

    If Alice measures \(A\) with POVM \(\{\Lambda_x\}_{x=1}^m\) and stores the outcome in a classical register \(X\), the joint post-measurement state is \(\sigma^{XB}=\sum_{x=1}^{m}|x\rangle\!\langle x|^{X}\otimes\mathrm{Tr}_{A}\left\lbrack \left(\sqrt{\Lambda_{x}}\otimes I_{B}\right)\rho^{AB}\left(\sqrt{\Lambda_{x}}\otimes I_{B}\right)^{*}\right\rbrack\)
    Since \(\rho^{AB}=\sum_{y}\eta_{y}^{A}\otimes\zeta_{y}^{B}\), then \(\mathrm{Tr}_{A}\left\lbrack \left(\sqrt{\Lambda_{x}}\otimes I_{B}\right)\left(\sum _{y}\eta_{y}^{A}\otimes\zeta_{y}^{B}\right)\left(\sqrt{\Lambda_{x}}\otimes I_{B}\right )^{*}\right\rbrack =\mathrm{Tr}_{A}\left\lbrack\sum_{y}\sqrt{\Lambda_{x}}\eta_{y} ^{A}\sqrt{\Lambda_{x}}\otimes\zeta_{y}^{B}\right\rbrack =\sum_{y}\text{Tr}[\sqrt{\Lambda_{x}} \eta_{y}^{A}\sqrt{\Lambda_{x}}]\cdot \zeta_{y}^{B}=\sum_{y}\text{Tr}[\Lambda_{x}\eta _{y}^{A}]\cdot \zeta_{y}^{B}\)Then \(=\sum_{x=1}^{m}|x\rangle\!\langle x|^{X}\otimes\operatorname{\mathrm{Tr}} _{A}\!\left[(\Lambda_{x}\otimes I_{B})\,\rho^{AB}\right]=\sum_{x=1}^{m}p_{x}\,|x\rangle \!\langle x|^{X}\otimes\sigma_{x}^{B}\)
    Where \(p_{x}=\operatorname{\mathrm{Tr}}\!\left[(\Lambda_{x}\otimes I_{B})\,\rho^{AB} \right]=\operatorname{\mathrm{Tr}}\!\left[\Lambda_{x}\,\rho^{A}\right],\sigma_{x} ^{B}=\frac{1}{p_{x}}\,\operatorname{\mathrm{Tr}}_{A}\!\left[(\Lambda_{x}\otimes I _{B})\,\rho^{AB}\right]\)and \(\rho^{A}=\operatorname{Tr}_B \rho^{AB}\).

  12. Set \(d := |A|\) and let \(\{\Lambda_x\}_{x \in [d^2]}\) be an informationally complete POVM in Herm(\(A\)). Denote also let its dual basis by \(\{\Gamma_y\}_{y \in [d^2]}\).

    1. Show that \(\mathrm{Tr}[\Gamma_y] = 1\) for all \(y \in [d^2]\).

      We know that \(\mathrm{Tr}[\Lambda_{x}\Gamma_{y}]=\delta_{xy}\), then \(\sum_{x}\mathrm{Tr}[\Lambda_{x}\Gamma_{y}]=\sum_{x}\delta_{xy}\), then \(\mathrm{Tr}\!\left[\left(\sum_{x}\Lambda_{x}\right)\Gamma_{y}\right]=1\)

      Thus \(\mathrm{Tr}[\Gamma_{y}]=1\) since \(\sum_{x}\Lambda_{x}=I\)​ 2. Show that at least one of the matrices in \(\{\Gamma_y\}_{y \in [d^2]}\) is not positive semidefinite.

      Idea: \(\text{Tr}[\Lambda_{x}\cdot\Gamma_{x}]\leq \text{Tr}[\Lambda_{x}]\), then to get contradiction

      Suppose \(\forall y, \Gamma_y \succeq 0\). We know \(\mathrm{Tr}[\Lambda_{x} \Gamma_{x}] =1\) and \(\text{Tr}[\Lambda_{x}\cdot\Gamma_{x}]=\sum_{y}p_{y}\text{Tr}[\Lambda_{x}\psi_{y} ]\leq\sum_{y}\text{Tr}[\Lambda_{x}\cdot\psi_{y}]=\text{Tr}[\Lambda_{x}]\)

      Thus \(1\leq \text{Tr}[\Lambda_x]\), then \(\sum_{x=1}^{d^2}\text{Tr}[\Lambda_{x}] \geq d^{2}\). But \(\sum_{x=1}^{d^2}\text{Tr}[\Lambda_{x}] = \text{Tr}[\sum_{x=1}^{d^2}\Lambda_{x}] = d\)

      Then \(d \geq d^{2}\) is a contradiction. 3. Show that if each \(\Lambda_x\) is rank 1, \(a := \mathrm{Tr}[\Lambda_x] = \mathrm{Tr}[\Lambda_y]\), and \(b := \mathrm{Tr}[\Lambda_x \Lambda_y] = \mathrm{Tr}[\Lambda_x \Lambda_z]\) for any 3 distinct numbers \(x, y, z \in [d^2]\), then necessarily \(a = \frac{1}{d} \quad \text{and} \quad b = \frac{1}{d^2(d+1)}.\)

      We know \(\mathrm{Tr}\!\left[\sum_{x=1}^{d^2}\Lambda_{x}\right] = d\). And \(\mathrm{Tr}\!\left[\sum_{x=1}^{d^2}\Lambda_{x}\right]=\sum_{x=1}^{d^2}\mathrm{Tr} [\Lambda_{x}]=ad^{2}\Rightarrow ad^{2}=d\Rightarrow a=\frac{1}{d}\)


      We know \(\text{Tr}[\Lambda_x]=a\), then \(\mathrm{Tr}[\Lambda_{x}\sum_{y=1}^{d^2}\Lambda_{y}]=a\)

      \(\;\Rightarrow\;\sum_{x=1}^{d^2}\operatorname{\mathrm{Tr}}[\Lambda_{x}\Lambda_{y}]=a\) \(\Rightarrow b(d^{2}-1) + \operatorname{Tr}[\Lambda_{x}^{2}] = \frac{1}{d}\)

      Since \(\Lambda_x\) is rank 1, then \(\text{Tr}[\Lambda_{x}^2]=a^{2}\) \(\Rightarrow b(d^2-1) + a^2 = \frac{1}{d}\) \(\Rightarrow b = \frac{\frac{1}{d} - a^2}{d^2 - 1}= \frac{\frac{1}{d} - \frac{1}{d^2}}{d^2 - 1}= \frac{1}{d^2(d+1)}\) 4. Show that if we remove from part (3) the condition \(\mathrm{Tr}[\Lambda_x] = \mathrm{Tr}[\Lambda_y]\) for \(x \neq y\) then \(\mathrm{Tr}[\Lambda_x]\) can take only two values that depend only on \(d\) and \(b\); what they are?

      \(a^{2}-a+bd^{2}-b=0\Rightarrow a=\frac{1\pm\sqrt{1-4bd^{2}+4b}}{2}\)

  13. Let \(|\Phi^{AB}\rangle := \frac{1}{\sqrt{m}}\sum_{z\in[m]} |zz\rangle\) be a maximally entangled state shared between Alice and Bob. Show that by sending her quantum system A to Bob, Alice can transmit to Bob \(2\log_2(m)\) classical bits.

    Idea: Describe super dense coding

    Proof

    Alice encodes his message by unitary matrix. From above we know \(U_{xy}=T^{x}S^{y}\) where \(|\psi_{xy}^{AB}\rangle=(T^{x}S^{y}\otimes I)|\Phi^{AB}\rangle\) is the state that Alice send to Bob after encoding.

    This is orthogonal since \(\langle \Phi|(S^{y'})^{*}(T^{x'})^{*}T^{x}S^{y}\otimes I|\Phi \rangle= \frac{1}{m} \text{Tr}[T^{x-x'}S^{y-y'}] = \delta_{xx'}\delta_{yy'}\) which is orthogonal since \(T,S\) is unitary then \(S^y(S^{y'})^* = S^y S^{-y'} = S^{y-y'}\)

    Then Bob has \(m^2\) possibilities: \(\left\{|\psi_{xy}^{AB}\rangle=(T^{x}S^{y}\otimes I)|\Phi^{AB}\rangle\right\}_{x,y\in[m]\times [m]}\)

    Then Bob perform the measurement \(\{|\underbrace{\psi_{xy}\rangle\langle\psi_{xy}}_{\pi_{xy}}|\}_{x,y\in\left\lbrack m\right\rbrack\times [m]}\) to get the \(x,y\)

    Thus Alice can transmit to Bob \(\log_{2}m^{2}=2\log_{2}(m)\text{ bits}\)

  14. Let \(\psi^{A \tilde{A}} := |\psi\rangle\langle\psi|\) with \(|\psi^{A \tilde{A}}\rangle = \sum_{x=1}^{|A|} \sqrt{p_x} |x\rangle|x\rangle \in A \otimes \tilde{A}\). Find the eigenvalues and eigenvectors of \(\text{id}^A \otimes \mathcal{T}(\psi^{A \tilde{A}})\), where \(\mathcal{T}\) is the transpose map. For which values of \(p_x\), the matrix \(\text{id}^A \otimes \mathcal{T}(\psi^{A \tilde{A}})\) is positive semidefinite?

    Idea: Consider basis \(B=\{\ket{11},\ket{22},...,\ket{dd},\ket{12},\ket{21},...,\}\) and group \(|ij\rang,\ket{ji}\) to calculate eigenvalues

    Proof

    Let \(d=\lvert A\rvert\) and \(M:= (\mathrm{id}^A\otimes \mathcal T)(\psi^{A\tilde A})= \sum_{i,j=1}^{d}\sqrt{p_i p_j}\,\lvert i j\rangle\langle j i\rvert .\)

    In the ordered basis \(\mathcal B=\big\{\lvert 11\rangle,\dots,\lvert dd\rangle,\; \lvert 12\rangle,\lvert 21\rangle,\; \lvert 13\rangle,\lvert 31\rangle,\;\dots\big\},\) the matrix of \(M\) is block diagonal with

    • \(1\times 1\) blocks: \([p_i]\) on each \(\lvert ii\rangle\),
    • \(2\times 2\) blocks on \(\mathrm{span}\{\lvert ij\rangle,\lvert ji\rangle\}\) for \(i<j\): \(B_{ij}=\begin{pmatrix}0 & \sqrt{p_i p_j}\\\sqrt{p_i p_j} & 0\end{pmatrix}.\)

    Characteristic polynomial: \(\chi_M(\lambda)=\det(\lambda I - M)= \prod_{i=1}^{d}(\lambda - p_i)\;\prod_{1\le i<j\le d}\det\!\begin{pmatrix}\lambda & -\sqrt{p_i p_j}\\-\sqrt{p_i p_j} & \lambda\end{pmatrix}= \prod_{i=1}^{d}(\lambda - p_i)\;\prod_{i<j}(\lambda^2 - p_i p_j).\)

    Eigenvalues (roots of \(\chi_M\)): \(p_i\) for each \(i\) or \(\pm \sqrt{p_i p_j}\) for each \(i<j\).


    • \(i=j\): \((M-p_i I)\lvert ii\rangle=0\quad\Rightarrow\quad\ker(M-p_i I)=\mathrm{span}\{\lvert ii\rangle\}.\)
    • \(i\neq j\), write \(v=\alpha\lvert ij\rangle+\beta\lvert ji\rangle\). Then \((M-\lambda I)v=\begin{pmatrix}-\lambda & \sqrt{p_i p_j}\\\sqrt{p_i p_j} & -\lambda\end{pmatrix}\begin{pmatrix}\alpha\\ \beta\end{pmatrix}=0.\)
      Hence: For \(\lambda=+\sqrt{p_i p_j}\): \(\alpha=\beta\), \(\ker(M-\lambda I)=\mathrm{span}\left\{\tfrac{1}{\sqrt2}(\lvert ij\rangle+\lvert ji\rangle)\right\}.\)

    For \(\lambda=-\sqrt{p_i p_j}\): \(\alpha=-\beta\), \(\ker(M-\lambda I)=\mathrm{span}\left\{\tfrac{1}{\sqrt2}(\lvert ij\rangle-\lvert ji\rangle)\right\}.\)

    Hence \(M\succeq 0\) iff \(p_i p_j=0\) for all \(i\ne j\), i.e., exactly one \(p_r=1\) and the rest \(0\).

  15. Let \(\mathcal{E}: \mathcal{L}(A) \rightarrow \mathcal{L}(B)\) be a linear map.

    1. Show that \(\mathcal{E}\) is trace preserving iff its dual \(\mathcal{E}^{*}\) is unital; i.e. \(\mathcal{E}^{*}(I^{B}) = I^{A}\).

      Idea: Express trace preserving in inner product. When we have \(\lang \mathcal{E}^*(I)-I|\rho\rang =0\), let \(\rho=\mathcal{E}^*(I)-I\) to get \(\mathcal{E}^*(I)=I\)

      Proof

      \(\Rightarrow\)) \(\operatorname{Tr}\big[\mathcal{E}(\rho)\big]=\operatorname{Tr}[\rho]\ \Rightarrow\ \langle \mathcal{E}(\rho), I\rangle=\langle \rho, I\rangle\ \ (\forall \rho)\)
      \(\langle \mathcal{E}(\rho), I\rangle=\langle \rho, \mathcal{E}^{*}(I)\rangle=\langle \rho, I\rangle\)
      \(\forall \rho:\ \langle \rho,\ \mathcal{E}^{*}(I)-I\rangle=0,\ \ \text{take }\rho =\mathcal{E}^{*}(I)-I\) \(\Rightarrow\ \mathcal{E}^{*}(I)=I.\)

      \(\Leftarrow\)) \(\operatorname{\mathrm{Tr}}[\mathcal{E}(\rho)]=\langle I\mid\mathcal{E}(\rho)\rangle =\langle\mathcal{E}^{*}(I)|\rho\rangle=\langle I|\rho\rangle=\operatorname{\mathrm{Tr}} [\rho]\). 2. Show that \(\mathcal{E}\) is trace non-increasing \((i.e. \text{Tr}[\mathcal{E}(\eta)] \leq \text{Tr}[\eta] \text{ for all } \eta \in \text{Pos}(A))\) iff its dual \(\mathcal{E}^{*}\) is sub-unital; i.e. \(\mathcal{E}^{*}(I^{B}) \le I^{A}\).

      Idea: Similar to 1 but we also need to use \(\rho=\sum\lambda_{i}|\psi_{i}\rang \lang \psi_{i}|\)

      Proof

      \(\Rightarrow\)) We know \(\operatorname{\mathrm{Tr}}[\mathcal{E}(\rho)] \le \operatorname{\mathrm{Tr}}[\rho]=1\).

      Then \(\operatorname{\mathrm{Tr}}\!\left[(\mathcal{E}^{*}(I^{B})^{*}\rho\right]\le\text{Tr} [\rho]\implies\operatorname{\mathrm{Tr}}\!\left[((\mathcal{E}^{*}(I^{B}))^{*}-I^{A} )\,\rho\right]\le0\).

      Then \(\langle \mathcal{E}^{*}(I^{B})-I^{A}\mid \rho\rangle \le 0,\ \forall \rho\ge 0\). Then \(\rho=\sum\lambda_{i}|\psi_{i}\rang \lang \psi_{i}|\) with \(\lambda_{i}\geq 0\)

      Then \(\sum\lambda_{i}\lang \psi_{i}|I-\mathcal{E}^{*} (I)|\psi_{i}\rang\geq 0\), then \(\mathcal{E}^{*}(I^{B}) \le I^{A}\).

      \(\Leftarrow\)) \(\operatorname{\mathrm{Tr}}[\mathcal{E}(\rho)]-\text{Tr}[\rho]=\langle\mathcal{E} ^{*}(I^{B})-I^{A}\mid\rho\rangle\) where \(\rho\geq 0\) but \(\mathcal{E}^{*}(I^{B})-I^{A}\leq 0\)

      Then \(\sum\lambda_{i}\lang \psi_{i}|\mathcal{E}^{*} (I)-I|\psi_{i}\rang\leq 0\), then \(\langle\mathcal{E}^{*}(I^{B})-I^{A}\ket {\rho}\leq 0\), then \(\operatorname{\mathrm{Tr}}[\mathcal{E}(\rho)]\leq\text{Tr}[\rho]\) 3. Show that \(\mathcal{E}\) is positive if and only if \(\mathcal{E}^{*}\) is positive.

      Idea: Definition and relate it to trace

      Proof

      \(\Rightarrow\)) We know \(\mathcal{E}^{A\to B}(\rho^{A}) \ge 0,\ \forall \rho^{A}\). Then Use definition to prove.
      Then, \(\langle\psi|\mathcal{E}^{*}(\rho^{B})|\psi\rangle=\text{Tr}[\psi\cdot\mathcal{E} ^{*}(\rho^{B})]=\text{Tr}[\mathcal{E}(\psi^{*})^*\cdot\rho^{B}]=\text{Tr}[\mathcal{E}(\psi^{*})\cdot \rho^B ]\) since \(\mathcal{E}(\psi^*) \ge 0\).
      Then \(\text{Tr}[\mathcal{E}(\psi^{*})\cdot\rho^{B}]=\sum_x\text{Tr}[p_x\psi_x\cdot\rho^{B}]=\sum_xp_x\lang\psi_x|\rho^{B}|\psi_x\rang\geq 0\) since spectral decomposition and \(\rho \geq 0\)

      \(\Leftarrow\)) Apply (⇒) on \(\mathcal{E}^{*}\). 4. Show that \(\mathcal{E}\) is completely positive if and only if \(\mathcal{E}^{*}\) is completely positive.

      Proof

      We know \(\mathcal{E}\) is positive iff \(\mathcal{E}^{*}\) is positive.

      Then \(\operatorname{id}^{R\to R}\otimes \mathcal{E}^{A\to B} = \mathcal{F}^{RA\to RB}\). Apply (3), we got \(\mathcal{F}\) is positive iff \(\mathcal{F}^{*}\) is positive.

      Then \(\operatorname{id}^{R\to R}\otimes \mathcal{E}^{A\to B}\) is positive iff \((\operatorname{\mathrm{id}}^{R\to R}\otimes\mathcal{E}^{A\to B})^{*}=\operatorname{\mathrm{id}} ^{R\to R}\otimes\mathcal{E}^{*\,B\to A}\) is positive.

  16. A generalized dephasing channel \(\mathcal{N} \in \text{CPTP}(A \rightarrow A)\) is a channel that transmit some preferred basis \(\{|x\rangle\}_{x \in [m]}\) of \(A\) without error. That is, \(\mathcal{N}(|x\rangle\langle x|) = |x\rangle\langle x| .\)

    1. Show that the completely dephasing channel \(\Delta\) is a generalized dephasing channel.

      Proof

      We know \(\Delta(\ket x\bra x)=\sum_{x'=1}^{|A|}\mathinner{\langle{x'}|}(\ket x\bra x)\mathinner{|{x'}\rangle}\mathinner {|{x'}\rangle}\mathinner{\langle{x'}|}=\sum_{x'=1}^{|A|}\mathinner{\langle{x'}|}\delta_{x,x'}\mathinner{|{x'}\rangle}\mathinner {|{x'}\rangle}\mathinner{\langle{x'}|}=\ket x\bra x\) 2. Show that \(\mathcal{N}\) above has a Stinespring isometry \(V_{\mathcal{N}}|x\rangle^{A} = |x\rangle^{A}|\phi_{x}^{E}\rangle \quad \forall x \in [m] ,\) where \(\{|\phi_x^E\rangle\}_{x \in [m]}\) are some normalized vectors in \(E\) (note that if \(\{|\phi_x^E\rangle\}\) is an orthonormal set then \(\mathcal{N} = \Delta\)).

      Idea: By theorem: \(\exists\) an isometry \(V:A\to AE\) s.t. \(\mathcal{N}(\rho)=\text{Tr}_{E}[V\rho V^{*}],\forall \rho\in\mathcal{L}(A)\)
      Then combining with definition of \(\mathcal{N}\), we get \(\text{Tr}_{E}[V|x\rang\lang x |V^{*}]=|x\rang\lang x|\)
      Then define \(V|x\rangle^{A}= |\psi_{x}\rang\). NTP: \(|\psi_{x}\rang=|x\rangle^{A}|\phi_{x}^{E}\rangle\)
      Using schmidt decomposition \(|\psi_{x}^{AE}\rang=\sum\sqrt{p_{y}}|y^{A}\rangle\left|\phi_{y}^{E}\rangle\right.\) to show that

      Proof

      Since \(\mathcal{N}\) is a channel, then by theorem \(\exists\) an isometry \(V:A\to AE\) s.t. \(\mathcal{N}(\rho)=\text{Tr}_{E}[V\rho V^{*}],\forall \rho\in\mathcal{L}(A)\)

      By definition \(\mathcal{N}(|x\rang\lang x|)=|x\rang\lang x|\), then \(\mathcal{N}(|x\rang\lang x|)=\text{Tr}_{E}[V|x\rang\lang x |V^{*}]=|x\rang\lang x|\)

      We define \(|\psi_{x}\rangle^{AE}:=V|x\rangle\), then \(\text{Tr}_{E}[\psi_{x}^{AE}]=|x\rangle\langle x|\)

      We have \(|\psi_{x}^{AE}\rang=\sum\sqrt{p_{y}}|y^{A}\rangle\left|\phi_{y}^{E}\rangle\right.\) by spectral decomposition

      Then \(\text{Tr}_{E}[\psi_{x}^{AE}]=\sum p_{y}\ket y\bra y\cdot\text{Tr}_{E}[\phi_{y}^{E} ]=\sum p_{y}\ket y\bra y=\ket x\bra x\)
      \(\implies\)When \(y \ne x\), \(p_{y} = 0\). When \(y=x\), \(p_{y} = 1\).

      Then \(\psi_{x}^{AE}=\mathinner{|{x^{A}}\rangle}\mathinner{|{\phi_{x}^{E}}\rangle}\implies V\mathinner{|{x}\rangle}=\mathinner{|{x}\rangle}\mathinner{|{\phi_{x}^{E}}\rangle}\)


      If \(\{|\phi_x^E\rangle\}\) is an orthonormal set, then \(\mathcal{N}(|x\rang\lang y|)=\text{Tr}_E[V|x\rang\lang y|V^*]=\text{Tr}_E[|x\rang|\phi_x\rang\cdot \lang y|\lang \phi_y|]\)
      \(=|x\rangle\langle y|\text{Tr}_{E}[|\phi_{x}\rangle\langle\phi_{y}|]=|x\rangle\langle y|\delta_{x,y}=0\) 3. Show that \(\Delta \circ \mathcal{N}= \mathcal{N}\circ \Delta = \Delta .\)

      Proof

      \(\Delta(\rho)=\sum_{x=1}^{|A|}\mathinner{|{x}\rangle}\rho_{xx}\mathinner{\langle{x}|}\)
      \(\Delta\circ\mathcal{N}(\rho)=\Delta\left(\sum_{x,y=1}^{|A|}\rho_{xy}\text{Tr}_{E} [|\phi_{x}\rangle\langle\phi_{y}|]|x\rangle\langle y|\right)=\sum_{x,y=1}^{|A|}\rho _{xy}\text{Tr}_{E}[|\phi_{x}\rangle\langle\phi_{y}|]\cdot\Delta\left(|x\rangle\langle y|\right)\)
      \(=\sum_{x,y=1}^{|A|}\rho_{xy}\text{Tr}_{E}[|\phi_{x}\rangle\langle\phi_{y}|]\cdot |x\rangle\langle x|=\sum_{x=1}^{|A|}\mathinner{|{x}\rangle}\rho_{xx}\mathinner{\langle{x}|}\)

      \(\mathcal{N}(\Delta(\rho))=\mathcal{N}(\sum_{x=1}^{|A|}\mathinner{|{x}\rangle}\rho _{xx}\mathinner{\langle{x}|})=\sum_{x=1}^{|A|}\mathinner{|{x}\rangle}\rho_{xx}\mathinner {\langle{x}|}\)

  17. Show that a quantum channel \(\mathcal{E} \in \text{CPTP}(A \rightarrow B)\) is a measurement-prepare channel if and only if it is entanglement breaking.

    Idea: \(\Rightarrow\)) NTP: \(\mathcal{E}^{A\to B}(\psi^{RA})\) is separable and use \(|\psi^{RA}\rang =(M\otimes I^{A})|\Omega^{\tilde{A}A}\rang\) and change \(\mathcal{E}(\Omega)\) to \(J_{\mathcal{E}}^{AB}\) and use \(J_{\mathcal{E}}^{AB}=\sum_{z=1}^{m}\Lambda_{z}^{T}\otimes\sigma_{z}^{B}\) of measurement-prepare channel, then change it to separable state
    \(\Leftarrow\)) Use \(J_{\mathcal{E}}^{AB}=\mathcal{E}^{\tilde{A}\rightarrow B}\left(\Omega^{A\tilde{A}} \right)\) to prove it, then check if the first one is POVM

    Proof

    \(\Rightarrow\)) Since \(\rho\) is convex combination of pure states, then it's enough to prove it for all pure state

    Then NTP: \(\mathcal{E}^{A\to B}(\psi^{RA})\) is separable \(\forall\) pure states \(\psi^{RA}\)

    We know \(|\psi^{RA}\rang =(M\otimes I^{A})|\Omega^{\tilde{A}A}\rang\), then \(\mathcal{E}^{A\to B}(\psi^{RA})=(M\otimes I^{A})\mathcal{E}\left(\Omega^{\tilde{A}A} \right)(M\otimes I^{A})^{*}\)

    \(=\left(M\otimes I^{A})J_{\mathcal{E}}^{AB}\right.(M\otimes I^{A})^{*}\), then since this, \(=\left(M\otimes I^{A}\right)\left(\sum_{z=1}^{m}\Lambda_{z}^{T}\otimes\sigma_{z} ^{B}\right)\left(M\otimes I^{A}\right)^{*}\)

    \(=\sum_{z=1}^{m}q_{z}\frac{M\Lambda_{z}M^{*}}{q_{z}}\otimes\sigma_{z}\) where \(q_{z}:=\operatorname{Tr}\left[M \Lambda_{z} M^{*}\right]=\operatorname{Tr}\left[M^{*} M \Lambda_{z}\right]\)

    Thus this is separable

    \(\Leftarrow\)) Let \(J_{\mathcal{E}}^{AB}=\mathcal{E}^{\tilde{A}\rightarrow B}\left(\Omega^{A\tilde{A}} \right)=\sum_{z}q_{z}\omega_{z}^{A}\otimes\tau_{z}^{B}\), let \(\eta_{z}^{A}:=q_{z}\omega_{z}^{A}\), then \(J_{\mathcal{E}}^{AB}=\sum_{z}\eta_{z}^{A}\otimes\tau_{z}^{B}\).
    Then we just check that \(\eta_{z}^{A}\) is a POVM: \(\text{Tr}_{B}\left\lbrack J_{\mathcal{E}}^{AB}\right\rbrack=\sum_{z}\eta_{z}^{A} \cdot\text{Tr}[\tau_{z}^{B}]=\sum_{z}\eta_{z}^{A}\)
    Since \(\mathcal{E}\) is quantum channel, then \(J_\mathcal{E}^A=I^A\). Thus \(\sum_z\eta_z^A=I_A\)

  18. Consider a POVM channel \(\mathcal{E} \in \mathrm{CPTP}(A \rightarrow B)\) s.t. \(\mathcal{E}(\rho) := \sum_{y=1}^{|B|} \operatorname{Tr}\left[\Lambda_{y} \rho^{A}\right]|y\rangle\langle y|^{B}\) where \(\left\{\Lambda_{y}\right\}_{y=1}^{|B|}\) is a POVM in \(\operatorname{Pos}(A)\).

    1. Find an operator sum representation (i.e. a Kraus decomposition) of \(\mathcal{E}\).

      Idea: \(\Lambda\to \sqrt{\Lambda}\sqrt{\Lambda}\) and expand trace

      Proof

      Let \(m:= |B|\), then \(\mathcal{E}(\rho) = \sum_{y=1}^{m}\text{Tr}[\Lambda_{y}\rho] |y\rang\lang y|\) \(=\sum_{y=1}^{m}\text{Tr}[\sqrt{\Lambda_{y}}\rho\sqrt{\Lambda_{y}}]|y\rang\lang y|\)
      \(= \sum_{y=1}^{m}\sum_{x=1}^{d}\lang x|\sqrt{\Lambda_{y}}\rho\sqrt{\Lambda_{y}}|x\rang |y\rang\lang y|\) \(=\sum_{x,y}\underbrace{|y\rangle\langle x|\sqrt{\Lambda_{y}}}_{M_{xy}}\rho\underbrace{\sqrt{\Lambda_{y}}|x\rangle\langle y|}_{M_{xy}^*}\)
      \(\left\{M_{xy}\right\}_{y\in\{m\},\,x\in\{d\}}\) check that \(\sum_{x,y}M_{xy}^{*}M_{xy}=\sum_{x,y}\sqrt{\Lambda_{y}}|x\rangle\langle y|y\rangle \langle x|\sqrt{\Lambda_{y}}=I\) 2. Find a Stinespring representation of \(\mathcal{E}\).

      Idea: \(\mathcal{E}(\rho) = \sum M_{z}\rho M_{z}^{*}= \text{Tr}_{E}[V \rho V^{*}]\) and just define \(V\)

      \(\mathcal{E}(\rho) = \sum M_{z} \rho M_{z}^{*}\) \(= \text{Tr}_{E}[V \rho V^{*}]\) where \(V = \sum_{z} M_{z} \otimes |z\rangle\)

      Then define \(V = \sum_{x,y} |y\rangle \langle x| \sqrt{\Lambda_y} \otimes |xy\rangle^E\) and \(|E|=md\). And \(V^*V=I\)

  19. Consider \(n\) bipartite states \(\left\{\left|\psi_{z}^{A B}\right\rangle\right\}_{z \in[n]}\) in \(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\). Find an optimal state \(\left|\phi^{A B}\right\rangle \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}\) with the following two properties:

    1. The state \(\left|\phi^{A B}\right\rangle\) can be converted by LOCC to \(\left|\psi_{z}^{A B}\right\rangle\), for all \(z \in[n]\).

      We know given \(|\psi_{z}^{AB}\rangle=\sum_{x=1}^{d}\sqrt{p_{x}^{z}}|\phi_x\rang\otimes |\psi_x\rangle,\,\,|\phi^{AB}\rangle =\sum_{x=1}^{d}\sqrt{q_{x}}|\phi_x'\rang\otimes |\psi_x'\rangle\), then \(\phi^{AB}\xrightarrow{LOCC}\psi_{z}^{AB}\,\text{ if and only if }\,\,\vec{p}^{z} \succ\vec{q}\)

      Then \(\vec{p}^{z}\succ\vec{q}\) 2. If another state, \(\left|\chi^{A B}\right\rangle\), can be converted by LOCC to \(\left|\psi_{z}^{A B}\right\rangle\), for all \(z \in[n]\), then \(\left|\chi^{A B}\right\rangle\) can also be converted to \(\left|\phi^{A B}\right\rangle\). That is, \(\left|\phi^{A B}\right\rangle\) is optimal.

      Idea: use \(\min S_k^z\) and let \(q_i=s_i-s_{i-1}\)

      Given \(\left|\chi^{A B}\right\rangle=\sum^{d}_{x=1}\sqrt{r_{x}}|\phi_x''\rang\otimes |\psi_x''\rangle\), then same reason if \(\vec{p}^{z}\succ\vec{r}\), then \(\vec q\succ\vec r\)

      Consider \(\vec{p_z}= (p_{1}^{z}, p_{2}^{z}, \dots, p_{d}^{z})\), \(S_{1}^{z}= p_{1}^{z}, \dots, S_{d}^{z}= \sum_{x=1}^{d}p_{x}^{z}\)

      \(\vec{p_{z}}\succ\vec{r}\Rightarrow p_{1}^{z}>r_{1}(S_{1}^{z}\geq r_{1}),\,S_{2}^{z} \ge r_{1}+r_{2},\dots,S_{d}^{z}\ge r_{1}+\dots+r_{d}\)

      Let \(\min_{z \in [n]}S_{k}^{z}= s_{k}\).
      Since \(\vec{p}^{z}\succ\vec{r}\), then \(s_{1}\ge r_{1},s_{2}\ge r_{1}+r_{2},\dots,s_{d}\ge r_{1}+\dots+r_{d}\)

      And we want \(\vec q\succ\vec r\)

      Since \(\vec{p}^{z}\succ\vec{q}\), then \(s_{1} \ge q_{1}, s_{2} \ge q_{1} + q_{2}, \dots, s_{d} \ge q_{1} + \dots + q_{d}\)

      Then we should let \(q_{1}=s_{1},q_{1}+q_{2}=s_{2},...,q_{1}+...+q_{d}=s_{d}\)

      Then \(q_{i}=s_{i}-s_{i-1},\forall i\in [d],s_{0}:=0\), this can imply \(\vec q\succ\vec r\)

      Thus \(|\phi^{AB}\rangle=\sum_{x=1}^{d}\sqrt{s_{i}-s_{i-1}}|xx\rangle\) where \(s_{i}=\min_{z\in[n]}S_{i}^{z}\) and \(S_i^z=\sum^i_{x=1}p_x^z\)

  20. Consider the entangled state shared between Alice and Bob, \(|\Psi^{AB}\rangle = \sqrt{p_{1}}|1\rangle^{A}|1\rangle^{B}+ \dots + \sqrt{p_{n}} |n\rangle^{A}|n\rangle^{B}\) where \(p_x > 0\) for all \(x \in [n]\).
    Prove the following theorem: Quantum teleportation of a \(d\)-dimensional qudit is possible if and only if none of the Schmidt coefficients are greater than \(1/d\). This also implies that the Schmidt rank \(n\) is greater or equal to \(d\).

    Proof

    \(|\Psi^{AB}\rangle=\sum_{i=1}^{n}\sqrt{p_{i}}|i\rangle^{A}|i\rangle^{B}\) and consider \(|\Phi_{d}^{AB}\rangle=\sum_{i=1}^{d}\frac{1}{\sqrt{d}}|i\rangle^{A}|i\rangle^{B} =\frac{1}{\sqrt{d}}\sum_{i=1}^{d}|i\rangle^{A}|i\rangle^{B}\).

    \(\Leftarrow\)) Suppose \(p_{x}\le \tfrac{1}{d},\ \forall x\in[m]\). Then \(p \prec \big(\tfrac{1}{d},\ldots,\tfrac{1}{d},0,\ldots,0\big)\)

    By Nielsen's Theorem \(\Psi^{AB}\xrightarrow{\mathrm{LOCC}}\Phi^{AB}_{d}\). Then we can use Quantum Teleportation with \(\Phi^{AB}_{d}\) to teleport a \(d\)-dimensional system.

    \(\Rightarrow\)) Suppose \(\Psi^{AB}\) can be used to teleport a qudit. We need to show \(p_{x}\leq \frac{1}{d}\)

    It's possible that \(|0\rang\lang 0|\xrightarrow{LOCC}\Phi_{d}^{A''A'}\) since we can throw \(|0\rang\lang 0|\) and prepare \(\Phi_{d}^{A''A'}\) since we just do local things

    image

    We prepare an entangled qudit state on \(A'',A'\) and send one of it to \(B\) by quantum teleportation.

    \(\Psi^{AB}\xrightarrow{LOCC}\Phi_{d}^{A''B}\)

    \(LOCC\downarrow\) \(\uparrow LOCC\)

    \(\Phi_{d}^{A''A'}\otimes \Psi^{AB}\xrightarrow{LOCC}\Phi_{d}^{A''B}\otimes \omega^{AA'}\)

    image

    Then by Nielsen's Theorem \(p \prec \big(\tfrac{1}{d},\ldots,\tfrac{1}{d},0,\ldots,0\big)\)

    Then \(p_{1}\le \frac{1}{d}\) and we know \(p_{1}\geq p_{2}\geq ...\geq p_{n}\). Then \(\frac{1}{d}\geq p_{1}\geq p_{2}\geq ...\geq p_{n}\).
    Thus \(p_{x}\leq \frac{1}{d}\).

    Also by \(p \prec \big(\tfrac{1}{d},\ldots,\tfrac{1}{d},0,\ldots,0\big)\), we get \(p_{1}\le \frac{1}{d}\), \(p_{1}+p_{2}\leq \frac{2}{d}\), . . . , \(\sum_{i=1}^{k}p_{i}\le \frac{k}{d},\forall k \le n\)\(\implies 1 \le \frac{n}{d}\) when \(k=n\). Then \(d \le n\)


Exercise in Lectures

  1. Homework 1: Let A be a normed space, and let \(\psi, \phi \in A\) with \(\|\phi\|=1\). Show that
    \(\left\|\frac{1}{\|\psi\|}\psi-\phi\right\| \leq 2\|\psi-\phi\|\)

    Here

    Idea: From left to right, we want get \(\|\psi-\phi\|\), thus we construct such in left: \(\left\|\frac{1}{\|\psi\|}\psi-\psi+\psi-\phi\right\|\)

  2. Homework 2: Show that \(P\geq 0\) iff \(P=M^*M\) for some complex matrix \(M\)

    Here

    From left to right: \(P=U^*\sqrt D \sqrt DU\)

    From right to left: Definition of positive

  3. Homework 4: Show that \(H_\pm=\frac{|H|\pm H}{2}\) where \(|H|:=\sqrt{H^*H}=\sqrt{H^2}\)

    Here

    Hint \(|H|=U|D|U^{*}\)

  4. Homework 6: If \(P\) is Hermitian and \(\text{Tr}P^{3}=\text{Tr}P^{2}=\text{Tr}P=1\), then \(P\) is pure state

    Here

    Idea: Consider \(\text{Tr}P^{2}-\text{Tr}P^{3}=0\), then use trace to get the scope of \(\lambda_x^2\text{ and }1-\lambda_x\)

  5. Homework 1: \(\hat{n}=(\sin\alpha\cos\beta, \sin\alpha\sin\beta, \cos\alpha)^{T}\). Prove:

    1. \(S_{\hat{n}}^2=\frac{1}{4}I\)

    2. The eigenvalues of \(S_{\hat{n}}\) are \(\pm\frac{1}{2}\)

    3. Show that if \(S_{\hat{n}}|\psi\rangle=\frac{1}{2}|\psi\rangle\), then \(|\uparrow_{\hat{n}}\rangle=|\psi\rangle\) \(= \cos(\frac{\alpha}{2})|0\rangle+e^{i\beta}\sin(\frac{\alpha}{2})|1\rangle\)

    Here

  6. Homework 2: \(\forall\) unit vectors \(\hat{n}\), \(|\Psi^{AB}\rangle = \frac{1}{\sqrt{2}}(|\uparrow_{\hat{n}}\rangle^{A} |\downarrow _{\hat{n}}\rangle - |\downarrow_{\hat{n}}\rangle^{A} |\uparrow_{\hat{n}}\rangle)\)

    Here

    1. Given \(\{M_x\}_{x\in[m]}, \{N_y\}_{y\in[n]}\) - Generalized measurements. Prove that \(\{M_x N_y\}_{x,y}\) is also a generalized measurement.
    2. Given \(M_{0}=a|+\rangle\langle0|,M_{1}=b|0\rangle\langle+|\). Find conditions on \(a,b \in \mathbb{C}\) s.t. \(\exists M_2\) with \(\{M_0, M_1, M_2\}\) are Generalized Measurements.

    Here

  7. H.W. Show that for every Unitary matrix \(\mathcal{E}(U\rho U^{*}) = U\mathcal{E}(\rho)U^{*}\) where \(\mathcal{E}\) is depolarizing channel

    Here

  8. H.W. \((U \otimes \bar{U}) J_{\varepsilon}^{AB}(U \otimes \bar{U})^{*} = J_{\varepsilon} ^{AB}\) \(\forall\)Unitary matrices \(U\)

    Here

  9. H.W. Let \(\mathcal{E} \in \text{CPTP}(A \rightarrow B)\) be a cq-channel as above, and set \(m := |A|\) and \(n := |B|\).

    1. Show that \(\{M_{xy}\}\) with \(M_{xy} : A \rightarrow B\) and \(M_{xy}:=\sqrt{\sigma_{x}}|y^{B}\rangle\langle x^{A}|,x\in[m]\,,\,y\in[n]\) forms an operator sum representation of \(\mathcal{E}\).

      Here 2. Show that the map \(V: A \rightarrow B \otimes \tilde{A}\tilde{B}\) given by \(V=\sum_{x\in[m]}\left(\sqrt{\sigma_{x}^{B}}\otimes I^{\tilde{B}}\right)|\Omega^{B\tilde{B}} \rangle\otimes|x^{\tilde{A}}\rangle\langle x^{A}|\) is a Stinespring isometry (the environment system is \(\tilde{A}\tilde{B}\)) satisfying \(\text{Tr}_{\tilde{A}\tilde{B}}[V\rho V^{*}]=\sum_{x\in[m]}p_{x}\sigma_{x}=\mathcal{E} (\rho)\text{ and }V^{*}V=I^{A}\)

      Stinespring isometry(an isometry \(V:A\to BE\) s.t. \(\mathcal{E}(\rho)=\text{Tr}_{E}[V\rho V^{*}],\forall \rho\in\mathcal{L}(A)\))

      Here


\(\lVert \psi \rVert_{p} = \big(\, |a_{1}|^{p} + \cdots + |a_{n}|^{p} \,\big)^{1/p}\) and \(\lVert M \rVert_{p} = \big(\, \mathrm{Tr}\,|M|^{p} \,\big)^{1/p}\)


\(\sigma_{0} = I\), \(\sigma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\), \(\sigma_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\), \(\sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\)


To rotate a qudit, formula: let \(\hat{n}=(\sin\alpha\cos\beta, \sin\alpha\sin\beta, \cos\alpha)^{T}, S_{\hat{n}}: = \frac{1}{2}\hat{n}\cdot\vec{\sigma}, T^{(\hat{n})}_{\theta} = e^{-i\theta S_{\hat{n}}}\)
Example of Qubit
Let \(|0\rangle = |\uparrow_z\rangle\), \(|1\rangle = |\downarrow_z\rangle\)
Then by formula, \(|\uparrow_{x}\rangle = T^{\hat{y}}_{\pi/2}|0\rangle\), just like \(\hat{x}=R^{(\hat{y})}_{(\pi/2)}\hat{z}\)
\(=T_{\pi/2}^{\hat{y}}|\uparrow_{z}\rangle=e^{-i\frac{\pi}{2}\hat{y}\cdot\vec{\sigma}} |0\rangle=e^{-i\frac{\pi}{4}\sigma_2}|0\rangle\) since \(\hat{y}=(0,1,0)\) and \(\vec{\sigma}=(\sigma_1, \sigma_2, \sigma_3)\)
\(= (\cos(\frac{\pi}{4})I - i\sin(\frac{\pi}{4})\sigma_2)|0\rangle = \left[\frac{\sqrt{2}}{2}I - i\frac{\sqrt{2}}{2}\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\right]|0\rangle\)
\(= \frac{\sqrt{2}}{2}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\right)\begin{pmatrix} 1 \\ 0 \end{pmatrix}\)
\(= \frac{\sqrt{2}}{2}\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{\sqrt{2}}{2} \times \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\)


\(|\Psi_-\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)\) is called singlet state


Measurements in open systems: Given \(\{M_x\}_{x\in[m]}\) - Generalized measurement and \(\rho\) - initial state
Probability for outcome \(x\): \(p_{x}=\mathrm{Tr}[M_{x}\rho M_{x}^{*}]\)
Post-measurement state after outcome \(x\) occurred is \(\sigma_{x} = \frac{M_{x} \rho M_{x}^{*}}{p_{x}}\)


\(\mathcal{E}\in CPTP(A\to B)\iff J_{\mathcal{E}}^{AB}\geq 0 \text{ and }J_{\mathcal{E}} ^{A}=I^{A}\) where \(J_{\mathcal{E}}^{A}:=\text{Tr}_{B}[J_{\mathcal{E}}^{AB}]\)
completely positive and trace preserving


The Choi matrix of a linear map \(\mathcal{E} \in \mathcal{L}(A \to B)\) is

\[ J_{\mathcal{E}}^{AB}:=\mathcal{E}^{\tilde{A}\to B}(\Omega^{A\tilde{A}})\quad(*) \]

Given Choi matrix \(J_{\mathcal{E}}^{AB}\in C^{d d' \times d d'}\), we can define \(\mathcal{E}\)

\[ \forall\rho\in C^{d\times d}\cong L(A),\quad\mathcal{E}^{A\to B}(\rho^{A}):=\text{Tr} _{A}[J_{\mathcal{E}}^{AB}(\rho^{A})^{T}\otimes I^{B}]\quad (**) \]

A linear map \(\mathcal{E}:\mathcal{L}(A)\to \mathcal{L}(B)\) is CPTP (i.e. a quantum channel) iff there exists a generalized measurement \(\{M_x\}_{x\in [m]}\)(satisfying \(\sum^m_{x=1}M_xM^*_x=I\) automatically) such that \(\forall \rho\in \mathcal{L}(A),\mathcal{E}(\rho)=\sum^{m}_{x=1}M_{x} \rho M_{x}^{*}\) (operator sum representation) where \(M_x:A\to B\)


Given \(\mathcal{E}\in \mathcal{L}(A\to B)\). \(\mathcal{E}\) is a CPTP (i.e. Quantum Channel) iff \(\exists E\) (Hilbert space) with \(|E|\leq |AB|\) and an Stinespring's isometry \(V:A\to BE\) s.t. \(\mathcal{E}(\rho)=\text{Tr}_{E}[V\rho V^{*}],\forall \rho\in\mathcal{L}(A)\)

\(V:=\sum^{m}_{z=1}M_{z}\otimes |z\rang^{E}\)


The Completely Dehasing Channel: \(\Delta(\rho):=\sum_{x=1}^{|A|}\mathinner{\langle{x}|}\rho\mathinner{|{x}\rangle} \mathinner{|{x}\rangle}\mathinner{\langle{x}|}\)

Preparation Channel: \(\mathcal{E}(\rho)=\mathcal{E}\circ \Delta(\rho)=\sum^{d}_{x=1}\lang x|\rho|x\rang \mathcal{E}(|x\rang\lang x|)=\sum^{d}_{x=1}\lang x|\rho|x\rang\sigma_{x}\) where \(\sigma_x:=\mathcal{E}(|x\rangle\langle x|)\)
\(J_{\mathcal{E}}^{A\tilde{A}}=\mathcal{E}^{A\to \tilde{A}}=\mathcal{E}\circ\Delta (\Omega^{A\tilde{A}})=\sum_{x,y}|x\rang\lang y|\otimes \mathcal{E}\circ\Delta(|x\rang \lang y|)\) $ =\sum_{x}|x\rangle\langle x|\otimes\sigma_{x}$

Measurement-Prepare Channel: \(\mathcal{E}:=\mathcal{P}^{X\rightarrow B}\circ M^{A\rightarrow X}\) where \(M^{A\to X}(\rho)=\sum_{x=1}^{m}\operatorname{\mathrm{Tr}}[\underbrace{\Lambda_{x}} _{POVM}\rho]\underbrace{|x\rangle\langle x|^{X}}_{\text{Classical Outcome}}\)

Then \(\mathcal{E}(\rho) = \mathcal{P}\cdot M(\rho)\) \(=\sum_{x=1}^{m}\operatorname{\mathrm{Tr}}[\Lambda_{x}\rho]\mathcal{P}(|x\rangle\langle x|)\)
Let \(\mathcal{E}(\rho)=\sum_{z=1}^{m}\operatorname{\mathrm{Tr}}\left[\Lambda_{z}\rho\right ]\sigma_{z}^{B}\), then Choi Matrix: \(J_{\mathcal{E}}^{AB}=\sum_{z=1}^{m}\Lambda_{z}^{T}\otimes\sigma_{z}^{B}\)

classical channel

image

\(\mathcal{E}\in CPTP(A\to A)\) is called a classical channel if \(\Delta\circ \mathcal{E}\circ \Delta=\mathcal{E}\)

We only consider the diagonal input since \(\Delta\) is completely Dehasing Channel.

\(\sigma:=\mathcal{E}(\rho)=\mathcal{E}\left(\sum^{d}_{x=1}t_{x}|x\rang\lang x|\right )=\sum^{d}_{x=1}t_{x}\mathcal{E}(\ket{x}\bra{x})\) where \(\rho = \begin{pmatrix} t_{1} & & 0 \\ & \ddots & \\ 0 & & t_{d} \end{pmatrix}\)

Then \(\sigma\) is also diagonal since \(\mathcal{E}(\rho)=\Delta(\mathcal{E}(\rho))\) by definition

Then \(\sum_{y=1}^{d} S_{y}|y\rangle\langle y| = \sum_{x=1}^{d} t_x \mathcal{E}(|x\rangle\langle x|)\), then after multiply \(\bra{y'},\ket{y'}\) on both sides, we get \(S_{y}=\sum_{x=1}^{d}t_{x}\underbrace{\langle y|\mathcal{E}(|x\rangle\langle x|)|y\rangle} _{p_{y|x}}\) where \(p_{y|x}:= \langle y|\mathcal{E}(|x\rangle\langle x|)|y\rangle\)

This satisfy \(\vec{S} = E\vec{t}\). Also \(\Delta(\sigma)=\sigma\)