7.31 Hermitian and Quantum States
Linear Operators on Hilbert Space
Linear
\(M:A\to B\) is linear if \(M(a|\psi\rang+b|\phi\rang)=aM|\psi\rang+bM|\phi\rang\) for all \(a,b\in \mathbb{F},\forall |\psi\rang,|\phi\rang\in A\)
Matrix
Since \(|y\rang =\begin{pmatrix} 0\\\vdots\\1\\0\\\vdots\\0 \end{pmatrix}\) here \(1\) is \(y\)-location and \(\lang x|=(0,...,0,1,0,...,0)\) here \(1\) is \(x\)-location
Then \(|y\rang \lang x|=\begin{pmatrix} 0&\cdots&0\\ \vdots&1&\vdots\\ 0&0&0 \end{pmatrix}\) here \(1\) is in the column \(x\) and row \(y\)
Then \(\lang y|\cdot M|x\rang =M_{yx}\) where \(M=\sum_{x\in[m]}\sum_{y\in[n]}M_{yx}|y\rang\lang x|\) (This is the basis with coefficients)
Then \(M|\psi\rang=\sum_{x}\sum_{y}M_{yx}|y\rang\lang x|\psi\rang=\sum_{y}\underbrace{\left(\sum_{x} M_{yx}\lang x|\psi\rang\right)}_{number}|y\rang\)
Also clearly that \(M=\sum_{x\in[m]}\sum_{y\in[n]}M_{yx}|y\rang\lang x|\) and \(M^*=\sum_{x\in[m]}\sum_{y\in[n]}\overline{M}_{yx}|x\rang\lang y|\)
Adjoint
The adjoint of a linear operator \(M:A\to B\) is itself a linear operator \(M^*:B\to A\)
Unitary Operator
\(U:A\to A,U^*U=I^A\) and \(\dim (A):=|A|\) where \(I^{A}= \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & 1 & \vdots \\ 0 & \cdots & 1 \end{pmatrix}=\sum^{|A|}_{x=1}|x\rang\lang x|\)
Note that the identity operator \(I^A : A \to A\) is a positive semi-definite operator (i.e. an operator with all eigenvalues strictly greater than zero)
Prove: If \(\left\{|v_x\rang\right\}^{|A|}_{x=1}\) is an orthonormal basis, then \(I^A=\sum^{|A|}_{x=1}|v_x\rang \lang v_x|\)
Proof
Method 1:
Assume \(|\psi\rangle = a_{1}|v_{1}\rangle + \dots + a_{|A|}|v_{|A|}\rangle\), then \(\sum_{x=1}^{|A|}|v_{x}\rangle\langle v_{x}||\psi\rangle = |v_{1}\rangle a_{1} + \dots + |v_{|A|}\rangle a_{|A|}= |\psi\rangle\)
Method 2:
Since \(\lang v_x||\psi\rang =\lang v_x|\psi\rang\) is a scalar, then we can move \(\lang v_x|\psi\rang\) in front of \(|v_x\rang\): \(\left(\sum_{x\in[m]}|v_{x}\rangle\langle v_{x}|\right)|\psi\rangle=\sum_{x\in[m]} \langle v_{x}|\psi\rangle|v_{x}\rangle=|\psi\rangle\)
Therefore, \(\sum_{x \in [m]} |v_x\rangle\langle v_x| = I^A\) for any orthonormal basis \(\{|v_x\rangle\}_{x \in [m]}\) of A.
Isometry
Definition 1
Let \(V:A\to B\) such that \(V^{*}V=I^{A}\)(clearly \(|B|\geq |A|\)), then \(V\) is called isometry.
If \(|B|>|A|\), then \(V\) can only be isometry not unitary. Thus we call it isometry
If \(|B|=|A|\), then \(V\) is isometry(unitary in particular). Conventionally, we call it unitary
Definition 2
\(V:A\to B\) is isometry if \(\forall |\psi\rang \in A,\lang V\psi|V\psi\rang =\lang \psi|\psi\rang\), that is \(\forall |\psi\rang\in A,||V\psi||=||\psi||\) (preserve the norm)
Proof of equivalence
\(1\Rightarrow2)\,\,\)\(\forall|\psi\rangle\in A,\langle V\psi|V\psi\rangle=\langle\psi|V^{*}V|\psi\rangle =\langle\psi|I^{A}|\psi\rangle=\lang \psi|\psi\rang\)
Homework 1: \(2\Rightarrow1)\,\,\langle\psi|(V^{*}V-I^{A})|\psi\rangle=\langle\psi|V^{*}V|\psi \rangle-\langle\psi|I^{A}|\psi\rangle=\langle V\psi|V\psi\rangle-\langle\psi|I^{A} |\psi\rangle=\langle\psi|\psi\rangle-\langle\psi|\psi\rangle=0\)
Then the eigenvalues of \(V^*V-I^A\) are all \(0\), then \(V^*V-I^A=0\)
Conclusion: \(\lang \psi|\phi\rang = \lang \psi|I|\phi\rang=\lang \psi| V^{*}V|\phi\rang=\lang V\psi|V\phi\rang\)
Eigenvalue of Unitary
\(U|\psi\rang =e^{i\theta}|\psi\rang\), that is \(U=\sum^d_{x=1}e^{i\theta_x}|\psi_x\rang\lang\psi_x|\)
So, it says the norm of eigenvalues of a unitary operator must be \(1\), that is \(||\lambda||=1\)
Given a orthonormal basis \(\{|\psi_x\rang\}_{x\in [d]}\) of \(A\) with \(U|\psi_x\rang =e^{i\theta_x}|\psi_x\rang\) (since O.N. basis)
Hermitian and Positive Matrices
Hermitian(Self-adjoint)
\(H^*=H\) and \(H=\sum_{x\in[d]}\lambda_{x}|\psi_{x}\rang \lang \psi_{x}|\) is spectral decomposition of \(H\) where \(\{|\psi_x\rang \}_{x\in [d]}\) is orthonormal eigen basis of \(A\)
Same reason as above, we can get \(H|\psi_{x}\rangle=\lambda_{x}|\psi_{x}\rangle\)
We denote by \(\mathrm{Tr}[H]\) the trace of Hermitian operator \(H: A \rightarrow A\).
That is, \(\mathrm{Tr}[H]:=\sum_{x \in[m]}\langle x|H| x\rangle\)
This is independent on the choice of the orthonormal basis \(\{|x\rangle\}\) of \(A\).
Positive semi-definite Matrices
\(P:A\to A\) is positive semi-definite iff \(\lang \psi|P|\psi\rang \geq 0,\forall |\psi\rang \in A\)
Notation: \(P\geq 0\)
Propostion
\(P\) is positive semi-definite iff \(P\) is Hermitian and eigenvalue are non-negative
Proof
\(\Rightarrow\)) \(\langle\psi|P|\psi\rangle=\overline{\langle\psi|P|\psi\rangle}=(\langle\psi|P|\psi \rangle)^{*}=(|\psi\rangle^{*}P|\psi\rangle)^{*}=(P|\psi\rangle)^{*}|\psi\rangle= |\psi\rangle^{*}P^{*}|\psi\rangle= \lang\psi|P^{*}|\psi\rangle\)
Then \(\lang \psi|(P^{*}-P)|\psi\rang=0\), then \(\langle\psi|i(P^{*}-P)|\psi\rangle=0\)
Let \(i(P^*-P)=H\), then easily \(H^{*}=H\)
Then \(\lang \psi |H|\psi\rang =0,\forall |\psi\rang\), take \(|\psi\rang\) eigenvector, then \(\lang \psi|\lambda |\psi\rang =0\) since \(H|\psi\rang =\lambda |\psi\rang\)
Then \(\lambda \lang \psi|\psi\rang =0\), since \(\lang \psi|\psi\rang \neq 0\), then \(\lambda =0\), then \(H=0\), then \(P^*=P\)
Since \(P\) is hermitian, then it's diagonalizable and has a eigen basis \(B\).
Then \(\forall|\psi\rangle\in B,\langle\psi|P|\psi\rangle=\langle\psi|\lambda|\psi\rangle =\lambda||\psi||\geq0\) since definition
\(\Leftarrow\)) Since \(P\) is hermitian, then it's diagonalizable and has a eigen basis \(B\).
Then \(\forall|\psi\rangle\in B,\langle\psi|P|\psi\rangle=\langle\psi|\lambda|\psi\rangle =\lambda||\psi||\geq0\) since eigenvalue is non-negative
Then \(\forall|\psi\rangle\in A,\langle\psi|P|\psi\rangle\geq0\)
Homework 2: Show that \(P\geq 0\) iff \(P=M^*M\) for some complex matrix \(M\)
Proof
\(\Rightarrow\)) Since \(P\geq 0\), then \(P\) is Hermitian and eigenvalue are non-negative, then \(P\) is diagonalizable
Then \(P=CDC^{*}\) with \(D= \begin{pmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{pmatrix}\) and \(D=\sqrt{D}\cdot \sqrt{D}\)
Let \(\sqrt{D}=E= \begin{pmatrix} \sqrt{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_{2} }& \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots &\sqrt{\lambda_{n}} \end{pmatrix}\) this is valid since eigenvalue are non-negative
Then clearly \(E^*=E\), then \(P=C(EE^*)C^{*}=(CE)\cdot(CE)^*=M^*M\)
\(\Leftarrow\)) \(\forall|\psi\rangle\in A,\langle\psi|P|\psi\rangle=\langle\psi|M^{*}M|\psi\rangle =(M|\psi\rangle)^{*}(M|\psi\rangle)=||M|\psi\rang||^2\geq0\)
Homework 3: Show that \(P\geq 0\) iff \(MPM^*\geq 0\) for all complex matrix \(M\)
Proof
\(\Rightarrow\)) Since \(P\geq 0\), then \(P=CC^*\) for some complex matrix
Then \(MPM^{*}=MCC^{*}M^{*}=(MC)(MC)^{*}\), then by homework 2, we get \(MPM^*\geq 0\)
\(\Leftarrow\)) Since \(MPM^*\geq 0\), then take \(M=I\), then \(P\geq 0\)
Decomposition of Hermitian Matrices
Given \(H:A\to A\) and \(H\) is Hermitian where \(d:=|A|\), then
Then \(H_+\geq 0,H_-\geq 0\) and \(H=H_{+}-H_{-}\) and \(H_+H_-=H_-H_+=0\) (Since orthonormal basis and \(H_+,H_-\) are disjoint)
Homework 4: Show that \(H_\pm=\frac{|H|\pm H}{2}\) where \(|H|:=\sqrt{H^*H}=\sqrt{H^2}\)
Proof
Since \(H\) is Hermitian, then \(H=UDU^{*}\), then \(|H|=\sqrt{UD^{2}U^{*}}\)
Then \(|H|=U|D|U^{*}\), then \(|H|=H_++H_-\) and we know \(H=H_+-H_-\)
Then \(H_\pm=\frac{|H|\pm H}{2}\)
Quantum state
If \(P\geq 0\) and \(\text{Tr}[P]=1\), then \(P\) is a quantum state or a density matrix
There are two states of a Quantum:
-
Pure Quantum State: \(\text{rank}P=1\)(definition)
\(P=|\psi\rang \lang \psi|\) where \(\lang \psi|\psi\rang =1\) since \(\text{Tr}[P]=\text{Tr}\left[|\psi\rang \lang \psi|\right]=\lang \psi|\psi\rang =1\)
Example
\(P= \begin{bmatrix} 1/2 & i/2 \\ -i/2 & 1/2 \end{bmatrix}\)
First by trace, we know the sum of two eigenvalues are \(1\)
Then by determinant \(\det P=\frac{1}{4}-\left(\frac{i}{2}\right)\left(\frac{-i}{2}\right)=0\), then there is \(1\) as eigenvalue, then another eigenvalue is \(0\)
Actually, we define \(|+i\rangle:=\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle)\)
\(P=|+i\rangle\lang+i|=\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle)\frac{1}{\sqrt{2}}( \langle0 |-i\langle1|)=\frac{1}{2}[|0\rangle\langle0|-i|0\rangle\langle1|+i|1\rangle \langle 0|+|1\rangle\langle1|]\) which is pure clearly
-
Mixed Quantum State: Not pure
Example
\(P=\frac{1}{4}|0\rang\lang 0|+\frac{3}{4}|1\rang\lang1|\) this is spectral decomposition of \(P\)
\(=\frac{1}{2}|u\rang\lang u|+\frac{1}{2}|v\rang\lang v |\) this is Pure-state decomposition of \(P\)
where \(|u\rang= \sqrt{\frac{1}{4}}|0\rang +\sqrt{\frac{3}{4}}|1\rang\) and \(|v\rang= \sqrt{\frac{1}{4}}|0\rang -\sqrt{\frac{3}{4}}|1\rang\)
Homework 5: Show \(\text{Tr}\left[|\psi\rang \lang \phi|\right]=\lang \phi|\psi\rang\quad\forall|\psi\rang,\lang\phi|\in A\)
Proof
Assume \(|\psi\rang =\begin{pmatrix} a_1\\a_2\\\vdots\\a_n \end{pmatrix}\) and \(\lang \phi|=\begin{pmatrix} b_1&b_2&\cdots&b_n \end{pmatrix}\), then \(|\psi\rangle\langle\phi|=\begin{pmatrix} a_1b_1&a_1b_2&\cdots&a_1b_n\\ a_2b_1&a_2b_2&\cdots&a_2b_n\\ \vdots&\vdots&\ddots&\vdots\\ a_nb_1&a_nb_2&\cdots&a_nb_n\\ \end{pmatrix}\)
Then \(\text{Tr}[|\psi\rangle\langle\phi|]=\sum_{i=1}^{n}a_{i}b_{i}\), also \(\langle\phi|\psi\rangle=\sum_{i=1}^{n}a_{i}b_{i}=\text{Tr}[|\psi\rangle\langle\phi |]\)
Proposition
For pure state: \(P=|\psi\rang \lang \psi|\), \(P^2=|\psi\rang \lang \psi|\psi\rang \lang \psi|=|\psi\rang \lang \psi|=P\), then it is a projector
Theorem
\(P\geq 0\) and \(\text{Tr}(P^2)=\text{Tr}(P)=1\) iff \(P\) is pure
Proof
\(\Rightarrow\))
Let \(\lambda_1,...,\lambda_d\) are eigenvalues of \(P\), then \(\text{Tr}P^2=\text{Tr}P\Rightarrow\sum^d_{x=1}\lambda_x^2=\sum^d_{x=1}\lambda_x=1\)
Then \(\sum^d_{x=1}\lambda_x(1-\lambda_x)=0\).
Since \(P\geq 0\)\, then eigenvalues are non-negative. Since \(\text{Tr}(P)=1\), then eigenvalues are \(\leq 1\)
Then \(0\leq \lambda_x\leq 1\), then \(\lambda_{x}(1-\lambda_{x})=0,\forall x\)
Then there is only one eigenvalue is \(1\), the others are \(0\)
Since \(P\) is positive semi-definite, it is also Hermitian, then it is diagonalizable and have a eigenspace.
By spectral decomposition: \(P = \sum_{x=1}^d \lambda_x |\psi_x\rangle\langle\psi_x|\) with eigenvalues and eigenvectors
Then \(P = (1) \cdot |\psi_1\rangle\langle\psi_1| + (0) \cdot |\psi_2\rangle\langle\psi_2| + (0) \cdot |\psi_3\rangle\langle\psi_3| + \dots + (0) \cdot |\psi_d\rangle\langle\psi_d|\)
Then \(P = |\psi_1\rangle\langle\psi_1|\). Then \(P\) is pure
\(\Leftarrow\))
Since \(P\) is pure, then \(P\geq 0\), \(\text{Tr}[P]=1\) and \(P^2=P\).
Then \(P\geq 0\) and \(\text{Tr}(P^2)=\text{Tr}(P)=1\)
Homework 6: If \(P\) is Hermitian and \(\text{Tr}P^{3}=\text{Tr}P^{2}=\text{Tr}P=1\), then \(P\) is pure state
Proof
Let \(\lambda_1,...,\lambda_d\) are eigenvalues of \(P\), then \(\text{Tr}P^{3}=\text{Tr}P^{2}=\text{Tr}P=1\Rightarrow\sum_{x=1}^{d}\lambda_{x}^{3} =\sum_{x=1}^{d}\lambda_{x}^{2}=\sum_{x=1}^{d}\lambda_{x}=1\)
Then \(\sum_{x=1}^{d}\lambda_{x}^{2}(1-\lambda_{x})=0\)
Since \(\text{Tr}P^2=1\), then \(\lambda_x^{2}\leq 1\), then \(-1\leq \lambda_x\leq 1\)
Then \(1-\lambda_{x}\geq 0\), thus we have \(0\leq \lambda_{x}^{2}\leq 1\) and \(1-\lambda_{x}\geq 0\)
Then there is only one eigenvalue is \(1\), the others are \(0\)
Then the following process is same...
The space of linear operators
Definition
We denote \(\mathcal{L}(A,B)\) be a set of all linear transformations from \(A\) to \(B\) and \(\mathcal{L}(A):=\mathcal{L}(A,A)\)
\(\mathcal{L}(A,B)\) is itself a Hilbert space. Recall: H.S. inner product: \(M,N\in\mathcal{L}(A,B)\) and \(\text{Tr}[M^*N]:=\lang M|N\rang\)
Relation of Hermitian set and Hilbert space
\(\text{Herm}(A)\nsubseteq\mathcal{L}(A)\) because if \(H\in \text{Herm}(A)\), then \((cH)^*=\bar cH^*=\bar cH\)
Thus \(\text{Herm}(A)\) is a Hilbert space over the real number but matrix can have complex coefficients
To summarize, \(\text{Herm}(A)\) is a real Hilbert space.
Theorem
\(\dim(\text{Herm}(A))=|A|^{2}\)
Proof
For an Hermitian matrix, there are two parts.
One is entries on the diagonal. Clearly, the entries should be real. Thus there are \(n\) such bases.
Another is entries off the diagonal. Since the matrix is Hermitian, then we can construct the pair.
For example, \(H(a,b)=x+iy=\overline{H(b,a)}\), thus for each pair \(\{a,b\}\), we need two real bases.
And there are \(1+2+...+(n-1)=\frac{n(n-1)}{2}\) such pairs
Thus totally we have \(n+2\times \frac{n(n-1)}{2}=n^2=|A|^2\)
Example
If \(|A|=2,\dim(\text{Herm}(A))=4=|A|^2\)
For \(\text{Herm}(\mathbb{C^2})\) we have basis of Pauli matrices
\(\sigma_{0},I: \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\) \(\sigma_{1},X: \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\) \(\sigma_{2},Y: \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\) \(\sigma_{3},Z: \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\)
If we use real number combination, we can get any Hermitian matrix in \(\mathbb{C}^2\)