Workshop

Week 8

December 6, 2024

- 1. Use Bolzano's theorem to prove that the following equations has at least one real solution.
 - (a) $e^x + x + 2 = 0$
 - (b) $x^3 + \ln(x) = -\sqrt{x}$
- 2. Let f be a continuous function on the closed interval [0, 1] with range also contained in [0, 1]. Prove that f must have a fixed point; that is, show f(x) = x for at least one value of $x \in [0, 1]$.
- 3. Choose an interval [a, b] such that the function $f : [a, b] \to \mathbb{R}$ will be injective. Give the inverse function in each case.
 - (a) $f(x) = x^2$ (b) $f(x) = \frac{1}{x}$
- 4. Compute the inverse of the following functions

(a)
$$f(x) = -2 \ln \left(\frac{x+1}{x-1}\right)$$

(b) $f(x) = \begin{cases} \frac{1}{2}x \text{ if } x < 0\\ 2x \text{ if } x \ge 0 \end{cases}$
(c) $f(x) = \begin{cases} -x^2 \text{ if } x \ge 0\\ 1-x^3 \text{ if } x < 0 \end{cases}$

5. Using the definition of ln prove that

(a)
$$\ln(ab) = \ln(a) + \ln(b)$$

(b) $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$
(c) $\ln(a^b) = b\ln(a)$