Workshop

Week 3

November 8, 2024

- 1. Compute the following limit $\lim_{n\to\infty} \left(\frac{2n+3}{2n}\right)^{3n+2}$
- 2. Let (x_n) and (y_n) be Cauchy sequences. Decide whether each of the following sequences is a Cauchy sequence, justifying each conclusion.
 - (a) $z_n = |x_n y_n|$
 - (b) $z_n = (-1)^n x_n$
- 3. Decide if the following series converges:

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+1}$$

(b)
$$\sum_{n=5}^{\infty} \frac{2^n - 5^n}{9^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$$

(d)
$$\sum_{n=1}^{\infty} \sqrt[n]{n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}$$

(f)
$$\sum_{n=1}^{\infty} \pi^{n/2} \cos(n\pi)$$

(g)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2+1}}$$

(h)
$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$$

(i)
$$\sum_{n=1}^{\infty} \frac{(1+\frac{1}{n})^n}{2^n}$$