Workshop

Week 1

October 17, 2024

1. Prove:

- (a) |a| = |-a|(b) $\left|\frac{1}{a}\right| = \frac{1}{|a|}$, if $a \neq 0$ (c) $\frac{|a|}{|b|} = \left|\frac{a}{b}\right|$, if $b \neq 0$
- (d) $|a+b+c| \le |a|+|b|+|c|$

(e)
$$|a - b| \le |a| + |b|$$

- 2. Let $a, b \in \mathbb{R}$ and $b \ge 0$, then $|a| \ge b$ if and only if $a \le -b$ or $a \ge b$.
- 3. Let $A \subseteq \mathbb{R}$ finite and non-empty. What is $\sup A$ and $\inf A$?
- 4. Prove that if $a \in A$ is a lower bound for A, then a = inf A.
- 5. Let A be a nonempty set which is bounded below. It is defined the set $B := \{b \in \mathbb{R} : b \text{ is a lower bound for A }\}$. Show that $\sup B = \inf A$.
- 6. Show that for any bounded set A, $inf A \leq sup A$.
- 7. Compute the supremum and infimum. Justify.

(a)
$$\{x \in \mathbb{Q} : x \ge 0 \text{ and } x^2 \le 10\}$$

(b) $\left\{\frac{n^2+2}{n^2+1} : n \in \mathbb{N}\right\}$
(c) $\left\{\frac{3n}{n+2} : n \in \mathbb{N}\right\}$