12.27
Workshop Week 11 - December 27, 2024
1. Compute the following limits:
(a) \(\lim_{x \to \infty} \left(e^x + x\right)^{\frac{1}{x}}\)
We can consider \(\ln\left(\lim_{x\to\infty}\left(e^{x}+x\right)^{\frac{1}{x}}\right)=\ln A\)
Or
\(\lim_{x\to\infty}\left(e^{x}+x\right)^{\frac{1}{x}}=\lim_{x\to\infty}e^{\frac{\ln\left(e^{x}+x\right)}{x}}=e^{\lim_{x\to\infty}\frac{\ln\left(e^{x}+x\right)}{x}}\)
Since \(\lim_{x\to\infty}\frac{\ln\left(e^{x}+x\right)}{x}=\lim_{x\to\infty}\frac{\frac{e^{x}+1}{e^{x}+x}}{1}=\lim_{x\to\infty}\frac{e^{x}}{e^{x}+1}=1\), then \(\lim_{x\to\infty}\left(e^{x}+x\right)^{\frac{1}{x}}=e\)
(b) \(\lim_{x \to \infty} \left(\ln(x) - x\right)\)
\(\lim_{x\to\infty}\left(\ln(x)-x\right)=\lim_{x\to\infty}\left(\ln(x)-\ln\left(e^{x}\right)\right)=\lim_{x\to\infty}\left(\ln(\frac{x}{e^{x}})\right)=\ln(\lim_{x\to\infty}\frac{x}{e^{x}})=1\)
(c) \(\lim_{x\to0^{+}}\left(\sin(x)\right)^{\sqrt{x}}\)
\(\lim_{x\to0^{+}}\left(\sin(x)\right)^{\sqrt{x}}\)
(d) \(\lim_{x \to \infty} \left(3^x + 5^x\right)^{\frac{1}{x}}\)
(e) \(\lim_{x \to \frac{\pi}{2}^-} \tan(x)^{\cos(x)}\)
2. Sketch the graphs of the following functions after finding:
- Domain
- Intervals of increase/decrease
- Intervals of concavity/convexity
- Points of local minima/local maxima
- Points of inflection
- Asymptotes
(a) \(f(x) = x^2 |x - 3|\)
(b) \(f(x) = \frac{x^2}{x^2 + 1}\)
(c) \(f(x) = 3x^4 - 8x^3 + 12\)
3. Let \(f : \mathbb{R} \to \mathbb{R}\) be a twice-differentiable function with the following properties:
- \(f(-1) = 4\), \(f(0) = 2\), \(f(1) = 0\)
- \(f'(x) > 0\) for \(|x| > 1\)
- \(f'(x) < 0\) for \(|x| < 1\)
- \(f'(1) = f'(-1) = 0\)
- \(f''(x) < 0\) for \(x < 0\)
- \(f''(x) > 0\) for \(x > 0\)
Sketch the graph of \(f\).