Tutorial

Week 4

November 5, 2024

1. Compute the following limits

(a)
$$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n$$

(b)
$$\lim_{n \to \infty} \left(\frac{n+3}{n+1} \right)^n$$

(c)
$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$$

(d)
$$\lim_{n \to \infty} \frac{n!}{n^n}$$

- 2. Prove using the definition of Cauchy sequence that if (x_n) and (y_n) are Cauchy sequences, then $(x_n + y_n)$, $(x_n \cdot y_n)$ are Cauchy sequences.
- 3. Prove that if x_n is a convergent sequence (or a Cauchy sequence), then the sequence $|x_{n+1} x_n|$ converges to 0.

The converse is not true: find an example of a non convergent sequence with this property.

- 4. Let (x_n) be a sequence, prove that if $0 \le r < 1$, C > 0 and $|x_{n+1} x_n| < Cr^n$, then (x_n) is a Cauchy sequence.
- 5. Show that the sequence (x_n) defined below is a Cauchy sequence.

$$x_1 = 1$$
 and $x_{n+1} = 1 + \frac{1}{x_n}$ for all $n \ge 1$

6. Prove that if $\sum_{n \to 0} a_n$ converges then $\lim_{n \to 0} a_n = 0$. Give a counterexample explaining why the converse is not true.

7. Prove the Algebraic Limit Theorem for Series: Let $\sum_{n=1}^{\infty} a_n = A$ and $\sum_{n=1}^{\infty} b_n = B$, then

(a)
$$\sum_{n=1}^{\infty} ca_n = cA$$
 for all $c \in \mathbb{R}$.

(b)
$$\sum_{n=1}^{\infty} (a_n + b_n) = A + B$$

8. Analize the following geometric series:

(a)
$$\sum_{n=3}^{\infty} \frac{1}{3^n}$$

(b) $\sum_{n=2}^{\infty} \frac{(-5)^n}{8^{n+2}}$
(c) $\sum_{n=1}^{\infty} \frac{10^n + 5^{2n}}{6^{2n}}$

9. Show that
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 converges.