Tutorial

Week 1

October 17, 2024

- 1. For $a \neq 0$, prove that:
 - (a) $(a^{-1})^{-1} = a^{-1}$
 - (b) $(ab)^{-1} = a^{-1}b^{-1}$
- 2. Using axiom of order (\leq), prove the following properties for <.
 - (a) If a < b and b < c then a < c.
 - (b) If a < b and then a + c < b + c.
 - (c) If a < b and c > 0 then ac < bc.
- 3. Show that c > 0 if and only if -c < 0 for all $c \in \mathbb{R}$.
- 4. Sign rules: Show the the following sentences.
 - (a) If a > 0 and b > 0 then ab > 0.
 - (b) If a > 0 and b < 0 then ab < 0.
 - (c) If a < 0 and b > 0 then ab < 0.
 - (d) If a < 0 and b < 0 then ab > 0.
- 5. Prove that if a < b and c < 0 then ac > bc.
- 6. Prove that 1 > 0.
- 7. Show that:
 - (a) a > 0 if and only if $a^{-1} > 0$.
 - (b) a < 0 if and only if $a^{-1} < 0$.
 - (c) If 0 < a < b then $a^{-1} > b^{-1}$.

8. Prove that:

- (a) ab > 0 if and only if a > 0 and b > 0 or a < 0 and b < 0.
- (b) ab < 0 if and only if a > 0 and b < 0 or a < 0 and b > 0.

9. Find the solution set of the following inequalities:

(a) 4 - x < 3 - 3x(b) $x^2 > 9$ (c) $\frac{x - 1}{x + 1} > 0$ (d) $\frac{1}{x} + \frac{1}{1 - x} > 0$

10. Show that:

- (a) |a.b| = |a|.|b|
- (b) $|a| |b| \le |a b|$
- (c) $||a| |b|| \le |a b|$
- 11. Let $a, b \in \mathbb{R}$ and $b \ge 0$, then $-b \le a \le b$ if and only if $|a| \le b$. In particular, $-|a| \le a \le |a|$.
- 12. Show that the supremum and infimum of a set are unique.
- (a) Prove that if M ∈ A is an upper bound for A, then M = sup A.
 (b) (Workshop) Prove that if m ∈ A is a lower bound for A, then m = inf A.
- 14. Assume $A \subseteq \mathbb{R}$ and $A \neq \emptyset$. We denote $-A := \{-a : a \in A\}$.
 - (a) If A has a lower bound then -A has an upper bound and $\inf(A) = -\sup(-A)$.
 - (b) (Workshop) If A has an upper bound then -A has a lower bound and inf(-A) = -sup(A).
- 15. Show that if $\sup A < \sup B$ then exists $b \in B$ that is an upper bound of A.
- 16. (a) Assume $s \in \mathbb{R}$ is an upper bound for a set $A \subseteq \mathbb{R}$. Then $s = \sup A$ if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $s \epsilon < a$.
 - (b) (Homework) Assume $i \in \mathbb{R}$ is an lower bound for a set $A \subseteq \mathbb{R}$. Then i = inf A if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $a < \epsilon + i$.
- 17. For each of the following sets compute the supremum and infimum. Justify.
 - (a) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$

(b) Let α and β be real numbers such that $\alpha < \beta$

$$\{x \in \mathbb{Q} : \alpha < x < \beta\}$$

(c) $\{x \in \mathbb{Q} : -\frac{3}{4} \le x \le 0\}$ (d) $\{x \in \mathbb{Q} : 0 < x^2 < 2\}$ (e) $\left\{\frac{n}{2n+1} : n \in \mathbb{N}\right\}$