Tutorial

Week 2

October 23, 2024

- 1. (a) Assume $s \in \mathbb{R}$ is an upper bound for a set $A \subseteq \mathbb{R}$. Then $s = \sup A$ if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $s \epsilon < a$.
 - (b) Assume $i \in \mathbb{R}$ is an lower bound for a set $A \subseteq \mathbb{R}$. Then i = inf A if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $a < \epsilon + i$.
- 2. Show that if $\sup A < \sup B$ then exists $b \in B$ that is an upper bound of A.
- 3. For each of the following sets compute the supremum and infimum. Justify.
 - (a) $\left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ (b) $\left\{ \frac{n}{2n+1} : n \in \mathbb{N} \right\}$

$$(2n+1)$$

- (c) $\{x \in \mathbb{Q} : x > 0 \text{ and } x^2 < 2\}$
- (d) Let α and β be real numbers such that $\alpha < \beta$

$$\{x \in \mathbb{Q} : \alpha < x < \beta\}$$

- (e) $\{x \in \mathbb{Q} : -\frac{3}{4} \le x \le 0\}$
- 4. Recall that a set A is dense in \mathbb{R} if an element of A can be found between any two real numbers a < b. Which of the following sets are dense in \mathbb{R} ? Take $p \in \mathbb{Z}$ and $q \in \mathbb{N}$ in every case.
 - (a) The set of all rational numbers p/q with q a power of 2.
 - (b) The set of all rational numbers p/q with $q \leq 10$.
 - (c) The set of all rational numbers p/q with $10|p| \ge q$.