Tutorial

Week 3

October 31, 2024

1. Algebra of limits:

(a) Let
$$\lim_{n \to \infty} a_n = a$$
, and $\lim_{n \to \infty} b_n = b$. Then,
i. $\lim_{n \to \infty} ca_n = a$, for all $c \in \mathbb{R}$;
ii. $\lim_{n \to \infty} a_n + b_n = a + b$
iii. $\lim_{n \to \infty} a_n b_n = ab$;
iv. If $a \neq 0$, $\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{a}$
v. If $b \neq 0$ then $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$.
vi. If $a_n \leq b_n$ for all n , then $a \leq b$,
(b) If $\lim_{n \to \infty} a_n = 0$, and $|b_n| < C$ for all n then $\lim_{n \to \infty} a_n b_n = 0$.

2. We say that $\lim_{n\to\infty} a_n = \infty$ if for any positive real number M there is a natural number N such that for every natural number $n \ge N$, we have $a_n > M$. We say that $\lim_{n\to\infty} a_n = -\infty$ if for any negative real number K there is a natural number N such that for every natural number $n \ge N$, we have $a_n < K$. Prove that:

(a) If
$$\lim_{n \to \infty} a_n = \infty$$
 and $\lim_{n \to \infty} b_n = b \neq 0$ then $\lim_{n \to \infty} a_n b_n = \begin{cases} \infty, \text{ if } b > 0 \\ -\infty, \text{ if } b < 0 \end{cases}$.
(b) if $\lim_{n \to \infty} a_n = -\infty$ and $\lim_{n \to \infty} b_n = b \neq 0$ then $\lim_{n \to \infty} a_n b_n = \begin{cases} -\infty, \text{ if } b > 0 \\ \infty, \text{ if } b < 0 \end{cases}$.

Proof of (a): Suppose b > 0. We will use the following claim.

Claim 1: If $\lim_{n\to\infty} b_n = b$ and b > 0, then exists δ and $N \in \mathbb{N}$ such that $b_n > \delta$ for all $n \ge \mathbf{N}$.

Proof Claim 1: Exercise

Since $\lim_{n\to\infty} b_n = b$ and b > 0, then there exist $0 < \delta$ and $N_1 \in \mathbb{N}$ such that $b_n > \delta$ for all $n \ge N_1$.

On the other hand, for a M > 0 (*), since $\lim_{n \to \infty} a_n = \infty$, exists $N_2 \in \mathbb{N}$ such that for every natural number $n \ge N_2$, we have $a_n > M$.

The following sentence is an useful tool, it is easy to prove

Exercise: If 0 < x < y and 0 < z < w, then 0 < xz < yw.

Let's continue with the proof. So we have now:

$$b_n > \delta > 0$$
, and $a_n > M > 0$

Then $a_n b_n > \delta M > 0$ for $N = max\{N_1, N_2\}$. Now change M in (*) by M/δ , then $\lim_{n \to \infty} a_n b_n = \infty$.

Let's see the case b < 0. We will use the following claim:

Claim 2: Let $\lim_{n\to\infty} b_n = b$ and b < 0, then exists $\delta < 0$ and $N \in \mathbb{N}$ such that $b_n < \delta$ for all $n \ge \mathbf{N}$.

Proof of Claim 2: Exercise.

Since $\lim_{n\to\infty} b_n = b$ and b < 0, then there exist $\delta < 0$ and $N_1 \in \mathbb{N}$ such that $b_n < \delta$ for all $n \ge N_1$.

Suppose K < 0 (**), then -K > 0. Since $\lim_{n \to \infty} a_n = \infty$, exists $N_2 \in \mathbb{N}$ such that for every natural number $n \ge N_2$, we have $a_n > -K$.

Then $a_n > -K > 0$ and $b_n < \delta < 0$ for $N = max\{N_1, N_2\}$. Thus

$$a_n > -K$$

$$a_n b_n < -K b_n$$

$$a_n b_n < -K b_n < \underbrace{-K \delta}_{<0}$$

The last inequality holds for all $n \ge N$. You can change in (**) K by $K/|\delta|$, then $\lim_{n\to\infty} a_n b_n = -\infty$.

3. Find the limits of the following sequences:

(a)
$$(a_n) = \frac{n-1}{n+1}$$

(b) $(b_n) = \frac{3n^2 + 2n + 2}{5n^2 + 4}$
(c) $(c_n) = \frac{2n+2}{5n^2 + 4}$
(d) $(d_n) = \frac{3n^2 + 2n + 2}{5n + 4}$
(e) $(e_n) = \frac{2^n + n^2}{2^n + 5}$

- 4. Prove that any subsequence of a convergent sequence is convergent.
- 5. (a) Let 0 < b < 1, prove that $(a_n) = (b^n)$ is decreasing and bounded below, hence it has a limit b. Compute b.
 - (b) Extend the result proved to the case |b| < 1; that is, show $\lim_{n \to \infty} (b^n) = 0$ if and only if -1 < b < 1.