Tutorial

Week 3

November 1, 2024

- 1. Show that $\lim_{n \to \infty} \sqrt[n]{a} = 1, a > 0.$
- 2. Show that if $a_n \ge 0$ and $\lim a_n = a$ then $\lim \sqrt{a_n} = \sqrt{a}$.
- 3. Study the limit of the following sequences.

(a)
$$n - \sqrt{n^2 + 2n}$$

(b) $\sqrt[n]{2 + (-1)^n}$
(c) $\sqrt[n]{\frac{1}{n!}}$
(d) $\sqrt[n]{2^n + 3^n}$
(e) $\frac{\sqrt[n]{1 + 2^n + 3^n + \dots + n^n}}{n}$

4. Let A be a nonempty bounded set and s = supA. Prove that there exists a sequence (a_n) such that $a_n \in A$ for all n and $(a_n) \to s$.