Tutorial

Week 6

November 20, 2024

1. Use the ϵ - δ definition of limit to prove the following limits.

(a)
$$\lim_{x \to a} x^2 = a^2$$
.

(b)
$$\lim_{x \to 1} \frac{1}{x} = 1$$
.

(c)
$$\lim_{x \to a} \sqrt{x} = \sqrt{a}, \ a > 0.$$

2. Compute the following limits using factoring cases:

(a)
$$\lim_{x\to 2} \frac{x^3-8}{x-2}$$

(b)
$$\lim_{x \to 1} \frac{2x^2 - 4x + 2}{x - 1}$$

(c)
$$\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}$$

3. Prove that $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$ does not exist.

4. Algebra of limits: Let f,g be real functions and x_0 is a limit point of Domf and Domg. Suppose exist $\lim_{x\to x_0} f(x) = L$ and $\lim_{x\to x_0} g(x) = M$, then

•
$$\lim_{x \to x_0} cf(x) = c \lim_{x \to x_0} f(x) = cL$$

•
$$\lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = L + M$$

•
$$\lim_{x \to x_0} (f.g)(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = L.M$$

•
$$\lim_{x\to x_0} \frac{1}{g}(x) = \frac{1}{M}$$
, if $M \neq 0$.

5. Right and Left limits

• $\lim_{x\to a^+} f(x) = L_1$ if for all $\epsilon > 0$, exists $\delta > 0$ such that for all $x \in Dom f \cap (a, a + \delta)$, we have $|f(x) - L_1| < \epsilon$.

1

• $\lim_{x\to a^-} f(x) = L_2$ if for all $\epsilon > 0$, exists $\delta > 0$ such that for all $x \in Dom f \cap (a - \delta, a)$, we have $|f(x) - L_2| < \epsilon$.

Prove that: $\lim_{x\to a} f(x)$ exists if and only if $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ exist and are equal, moreover $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) = \lim_{x\to a} f(x)$.

- 6. Analyze the existence of $\lim_{x\to 0} sgn(x)$.
- 7. Let q be the following function

$$g(x) = \begin{cases} 2 - x & \text{if } x < -1\\ x + 2 & \text{if } -1 \le x < 1\\ 4 & \text{if } x = 1\\ 4 - x & \text{if } x > 1 \end{cases}$$

Compute:

- (a) $\lim_{x \to -1^+} g(x)$
- **(b)** $\lim_{x \to -1^{-}} g(x)$
- (c) $\lim_{x\to 1^+} g(x)$
- (d) $\lim_{x \to 1^-} g(x)$
- 8. Limits at infinity
 - $\lim_{x\to\infty} f(x) = L$ if for all $\epsilon > 0$, exists N > 0 such that whenever x > N, it follows that $|f(x) L| < \epsilon$.
 - $\lim_{x \to -\infty} f(x) = L$ if for all $\epsilon > 0$, exists N < 0 such that whenever x < N, it follows that $|f(x) L| < \epsilon$.

Prove that

- $(\mathbf{a}) \lim_{x \to \infty} \frac{1}{x} = 0$
- **(b)** $\lim_{x \to -\infty} \frac{1}{x} = 0$
- 9. Analyze $\lim_{x\to\infty}\frac{P(x)}{Q(x)}$, where P(x) and Q(x) are real polynomials.

2