12.19
-
Tangent Line
Determine the equation of the line tangent to the graph of \(y = x^3 - 3x + 2\) at the point \(x_0 = -2\).
Solution
Since \(f'(x) = 3x^2 - 3x + 0 = 3x^2 - 3\), then \(f'(-2) = 3(-2)^2 - 3 = 12 - 3 = 9\)
Then \(y = 9x + b\), since \(f(-2)=0\), then \(0 = 9(-2) + b\), then \(b = 18\)
Finally \(y = 9x + 18\) -
Normal Line
Determine the equation of the normal line to \(y = x^3 - 3x + 2\) at the point \(x_0 = -2\).
Suppose \(L^{\perp}:y=\tilde{m}x+\tilde{b}\)
Then we know \(L\) and \(L^\perp\) are orthogonal \(\iff m \cdot \tilde{m} = -1\)
Then \(\tilde{m} = \frac{-1}{m} = \frac{-1}{9}\), then \(y = \frac{-1}{9}x + \tilde{b}\). Since \((-2, 0) \in L^\perp\), then \(0 = \frac{-1}{9}(-2) + \tilde{b}\)
We have \(\tilde{b} = \frac{-2}{9}\), thus \(y = \frac{-1}{9}x - \frac{2}{9}\) -
One-to-One Function
Let \(f\) be differentiable on an interval \(A\). Prove that if \(f'(x) \neq 0\) on \(A\), then \(f\) is injective
To prove injection, we can take \(x_1, x_2 \in A\), \(x_1 \neq x_2\) (\(x_1 < x_2\)) and to prove \(f(x_1)\neq f(x_2)\)
Suppose \(f(x_1)=f(x_2)\), Rolle Theorem \(\implies \exists c \in (x_1, x_2)\) such that \(f'(c) = 0\)
But \(f'(x) \neq 0 \ \forall x \in A\), then \(f(x_1) \neq f(x_2)\)
Therefore, \(f\) is injective.
The converse one is not true, counter example: \(x^3\)
-
Differentiable Function \(h\)
Let \(h\) be a differentiable function defined on the interval \([0, 3]\), and assume that \(h(0) = 1\), \(h(1) = 2\), and \(h(3) = 2\).
-
Argue that there exists a point \(d \in [0, 3]\) where \(h(d) = d\).
\(f(x) = h(x) - x\) is a differentiable function on \([0, 3]\)
\(f(0) = h(0) - 0 = 1\)
\(f(1) = h(1) - 1 = 2 - 1 = 1 > 0\)
\(f(3) = h(3) - 3 = 2 - 3 = -1 < 0\)Bolzano Theorem: \(\implies \exists d \in (1, 3)\) such that \(f(d) = 0\), then \(h(d) - d = 0\), then \(h(d) = d\) 2. Argue that at some point \(c\), we have \(h'(c) = \frac{1}{3}\).
Since \(h(0) = 1\) and \(h(3) = 2\), then \(\frac{h(3) - h(0)}{3 - 0} = \frac{1}{3}\)By MVT Thm, \(\exists c \in [0, 3]\) such that \(h'(c) = \frac{1}{3}\). 3. Argue that \(h'(x) = \frac{1}{4}\) at some point in the domain.
\(f(x)=h(x)-\frac14x+b\)
\(f(0) = h(0) - 0 + b = 1 + b\)
\(f(1) = h(1) - \frac{1}{4}(1) + b = 2 - \frac{1}{4} + b = \frac{7}{4} + b\)
\(f(3) = h(3) - \frac{3}{4} + b = 2 - \frac{3}{4} + b = \frac{5}{4} + b\)Setting \(b = -\frac{5}{4}\): then \(f(0)=1-\frac54=-\frac14<0\), \(f(1)=\frac74-\frac54=\frac24=\frac12>0\), \(f(3) = \frac{5}{4} - \frac{5}{4} = 0\)
By Bolzano Thm, \(\exists c \in (0, 1)\) such that \(f(c) = 0\)
\(f(c) = f(3) = 0 \implies\) Rolle Thm \(\implies \exists \tilde{c} \in (c, 3)\) such that \(f'(\tilde{c}) = 0\)
Since \(f'(x) = h'(x) - \frac{1}{4}\), then \(f'(\tilde{c}) = h'(\tilde{c}) - \frac{1}{4} = 0 \implies h'(\tilde{c}) = \frac{1}{4}\)
-
-
Mean Value Theorem Applications
Let \(I = (a, b)\) be an open interval, and let \(f\) be a function differentiable on \(I\). Use the Mean Value Theorem to prove the following statements:
- If \(f'(x) = 0\) for all \(x \in I\), then there is a constant \(r\) such that \(f(x) = r\) for all \(x \in I\).
- If \(f'(x) > 0\) for all \(x \in I\), then \(f(x)\) is strictly increasing on \(I\).
- If \(f'(x) < 0\) for all \(x \in I\), then \(f(x)\) is strictly decreasing on \(I\).
- Is the converse true in (2) and (3)?
-
Inequalities
Prove that:
-
\(2\sqrt{x} > 3 - \frac{1}{x}\), when \(x > 1\).
Proof
Consider \(f(x) = 2\sqrt{x} + \frac{1}{x} - 3\). It is enough to show \(f(x) > 0 \ \forall x > 1\)
Since \(f'(x) = \frac{1}{\sqrt{x}} - \frac{1}{x^2}\) and \(x > 1 \implies \frac{1}{\sqrt{x}} > \frac{1}{x^2}\)\(\implies f'(x) > 0\)\(\implies f(x)\) is monotonic increasing
Since \(f(1) = 0\), then \(f(x) > 0 \ \forall x > 1\). 2. \(e^x > 1 + x\) for all \(x\).
\(f(x)=(x^2-x-1)e^x\) \(Dom_f = \mathbb{R}\)
\(f'(x) = (2x - 1)e^x + (x^2 - x - 1)e^x = (x^2 + x - 2)e^x = 0\)
Then \(x^2 + x - 2 = 0\), then \(x = \frac{-1 \pm \sqrt{1 - 4(-2)}}{2} = \frac{-1 \pm \sqrt{9}}{2} = \frac{-1 \pm 3}{2}\) \(\Rightarrow x_1 = 1, x_2 = -2\)
Thus Local maximum at \(x = -2\) and Local minimum at \(x = 1\)
\(f(x) = (x^2 - x - 1)e^x\)
\(\left(-2,f(-2)\right)=(-2,5e^2),\left(1,f\left(1\right))=(1,-e\right)\)
\(f\) is increasing in \((-\infty, -2)\) and \((1, +\infty)\).
\(f\) is decreasing in \((-2, 1)\).
\(f(0) = -e^0 = -1\)
If \(f(x) = (x^2 - x - 1)e^x = 0\), then \(x^2 - x - 1 = 0\), then \(x = \frac{1 \pm \sqrt{1 + 4}}{2} = \frac{1 \pm \sqrt{5}}{2}\)
-
-
Limits
Determine the following limits:
- \(\lim_{x \to 0} \frac{x}{\tan x}\)
- \(\lim_{x \to 0} \frac{\ln x}{\cot x}\)
- \(\lim_{x \to 0} \left( \frac{1}{\sin^2 x} - \frac{1}{x^2} \right)\)
- \(\lim_{x \to 0} \frac{x - \arctan x}{x^3}\)