Skip to content

11.15 Topology

Exercise Find the domain of the following functions

  1. \(f(x) = \sqrt{1 - x^2}\)

    image

    \(\forall x \in A, \exists f(x)\) and it is unique

    \(f: \mathbb{R} \rightarrow \mathbb{R}\) \(x \rightarrow f(x)\)

    \(\text{Dom } f = \{ x \in \mathbb{R} : f(x) \text{ is defined} \}\)

    For part (a):

    \(f(x) = \sqrt{1 - x^2}\)

    \(1 - x^2 \geq 0\)

    \((1-x)(1+x)\geq0\Rightarrow\begin{cases}1-x\geq0\quad\text{and}\quad1+x\geq0\\ \text{or}\\ 1-x\leq0\quad\text{and}\quad1+x\leq0\end{cases}\)

    \(\begin{cases}1\geq x\quad\text{and}\quad x\geq-1\Rightarrow x\in[-1,1]\\ \text{or}\\ 1\leq x\quad\text{and}\quad x\leq-1\Rightarrow\text{the intersection is empty}\end{cases}\)

    \(Domf=[-1,1]\)

  2. \(f(x) = \frac{1}{\sqrt{1 - x^2}}\)

    \(1 - x^2 > 0\)

    \(\text{Dom } f = (-1, 1)\)

    \(\frac{1}{0}\) is not defined in \(\mathbb{R}\)

Graphs of a function

\(g(f)=\{\left(x,f(x)\right)\in\mathbb{R}^2:x\in\text{Dom }f\}\)

  1. Constant function

    \(f(x) = c, \quad c \in \mathbb{R}\)

    image

  2. Absolute value function

    \(f(x)=|x|=\begin{cases}x, & \text{if }x\geq0\\ -x, & \text{if }x<0\end{cases}\)

    image

  3. \(\text{Sign function}\)

    \(\text{Sign}(x)=\begin{cases}1, & x>0\\ -1, & x<0\end{cases}\)

    image