Skip to content

10.31 Convergence

Tutorial week 3 part 1.pdf

  1. Algebra of limits:

    1. Let \(\lim_{n \to \infty} a_n = a\) and \(\lim_{n \to \infty} b_n = b\). Then

      If \(a_n \leq b_n\) for all \(n\), then \(a \leq b\).

      Proof

      \(\lim_{n\to\infty}a_{n}=a\implies\forall\,\epsilon_1>0,\,\exists\,N_1\in\mathbb{N}\text{ such that }|a_{n}-a|<\epsilon_1,\forall\,n\geq N_1\)

      \(\lim_{n\to\infty}b_{n}=b\implies\forall\,\epsilon_2>0,\,\exists\,N_2\in\mathbb{N}\text{ such that }|b_{n}-b|<\epsilon_2,\forall\,n\geq N_2\)

      Then \(-\epsilon_1<a_{n}-a<\epsilon_1\) and \(-\epsilon_2<b_{n}-b<\epsilon_2\)

      Since \(a_n\leq b_n,\forall n\), then \(\left(a_{n}\right)_{\max}\leq\left(b_{n}\right)_{\min}\Rightarrow\varepsilon_1+a\leq-\varepsilon_2+b\)

      Thus \(a-b\leq-\varepsilon_1-\varepsilon_2\)

      We need to prove \(a\leq b\Rightarrow a-b\leq 0\)

      Since \(-\varepsilon_1-\varepsilon_2<0\), then \(a-b\leq 0\)

      Thus \(a \leq b\) 2. If \(\lim_{n \to \infty} a_n = 0\), and \(|b_{n}|<c\) for all \(n\), then \(\lim_{n \to \infty} a_n b_n = 0\).

      Proof

      Take \(\frac{\varepsilon}{c}>0\)

      \(\lim_{n\to\infty}a_{n}=0\implies\exists\,N\in\mathbb{N}\text{ such that }|a_{n}-0|<\frac{\varepsilon}{c}\,,\forall\,n\geq N\)

      \(|b_n| < c\)

      \(|a_{n}b_{n}-0|=|a_{n}b_{n}|=|a_{n}||b_{n}|<\frac{\varepsilon}{c}\cdot c=\varepsilon\), take the same \(N\)

      Then \(\lim_{n \to \infty} a_n b_n = 0\)

  2. We say that \(\lim_{n \to \infty} a_n = \infty\) if for any positive real number \(M\) there is a natural number \(N\) such that for every natural number \(n \geq N\), we have \(a_n > M\).

    We say that \(\lim_{n \to \infty} a_n = -\infty\) if for any negative real number \(K\) there is a natural
    number \(N\) such that for every natural number \(n \geq N\), we have \(a_n < K\).

    Prove that:

    1. If \(\lim_{n \to \infty} a_n = \infty\) and \(\lim_{n \to \infty} b_n = b \neq 0\) then \(\lim_{n \to \infty} a_n b_n =\begin{cases}\infty, & \text{if } b > 0 \\-\infty, & \text{if } b < 0\end{cases}\)

      Proof

      If \(b > 0\).

      Since \(\lim_{n \to \infty} b_n = b\) and \(b > 0\), there exist \(N_1 \in \mathbb{N}\) such that \(b_{n}>\frac{b}{2}\) for all \(n \geq N_1\).Lemma 1: If \lim_{n \to \infty} a_n = \ell and \ell > 0, then there is a number X such th...

      On the other hand, for \(M > 0\) , since \(\lim_{n \to \infty} a_n = \infty\), there exists \(N_2 \in \mathbb{N}\) such that for every natural number \(n \geq N_2\), we have \(a_n > M\).

      The following statement is useful: if \(0 < x < y\) and \(0 < z < w\), then \(0 < xz < yw\).

      Continuing with the proof, we now have:

      \(b_{n}>\frac{b}{2}>0\) and \(a_n > M > 0\).

      Then \(a_{n}b_{n}>\frac{Mb}{2}>0\) for \(N = \max \{N_1, N_2\}\). Thus let \(M^{\prime}=\frac{Mb}{2}\), we have \(a_nb_n>M'\).

      Then \(\lim_{n \to \infty} a_n b_n = \infty\).


      If \(b < 0\).

      Since \(\lim_{n \to \infty} b_n = b\) and \(b < 0\), there exist \(N_1 \in \mathbb{N}\) such that \(b_{n}<\frac{b}{2}\) for all \(n \geq N_1\)

      On the other hand, for \(M > 0\) , since \(\lim_{n \to \infty} a_n = \infty\), there exists \(N_2 \in \mathbb{N}\) such that for every natural number \(n \geq N_2\), we have \(a_n > M\).

      Thus \(-b_{n}>-\frac{b}{2}>0\) and \(a_n > M > 0\).

      Then \(-a_{n}b_{n}>-\frac{Mb}{2}>0\) for \(N = \max \{N_1, N_2\}\). Thus let \(M^{\prime}=\frac{Mb}{2}\), we have \(a_nb_n<M'\).

      Then \(\lim_{n\to\infty}a_{n}b_{n}=-\infty\).

      Professor's proof

      We will use the following claim.

      Claim 1: If \(\lim_{n \to \infty} b_n = b\) and \(b > 0\), then there exists \(\delta > 0\) and \(N \in \mathbb{N}\) such that \(b_n > \delta\) for all \(n \geq N\).

      Proof of Claim 1:

      \(\forall \, \epsilon > 0, \, \exists \, N \in \mathbb{N} \text{ such that } |b_n - b| < \epsilon \, \forall \, n \geq N\)

      \(-\epsilon < b_n - b < \epsilon\)

      \(-\epsilon + b < b_n < \epsilon + b\)

      if \(0 < \epsilon < b \implies \delta = b - \epsilon > 0\), \(N \in \mathbb{N}\)

      Then \(b_n > \delta\)

      Since \(\lim_{n \to \infty} b_n = b\) and \(b > 0\), there exist \(0 < \delta\) and \(N_1 \in \mathbb{N}\) such that \(b_n > \delta\) for all \(n \geq N_1\).

      On the other hand, for \(M > 0\) (*), since \(\lim_{n \to \infty} a_n = \infty\), there exists \(N_2 \in \mathbb{N}\) such that for every natural number \(n \geq N_2\), we have \(a_n > M\).

      The following statement is useful: if \(0 < x < y\) and \(0 < z < w\), then \(0 < xz < yw\).

      Continuing with the proof, we now have:

      \(b_n > \delta > 0\) and \(a_n > M > 0\).

      Then \(a_n b_n > \delta M > 0\) for \(N = \max \{N_1, N_2\}\). Now change \(M\) in (*) by \(M / \delta\), then \(\lim_{n \to \infty} a_n b_n = \infty\).

      Now, consider the case \(b < 0\). We use the following claim:

      Claim 2: If \(\lim_{n \to \infty} b_n = b\) and \(b < 0\), then there exists \(\delta < 0\) and \(N \in \mathbb{N}\) such that \(b_n < \delta\) for all \(n \geq N\).

      Proof of Claim 2:

      \(\forall \, \epsilon > 0, \, \exists \, N \in \mathbb{N} \text{ such that } |b_n - b| < \epsilon \, \forall \, n \geq N\)

      \(-\epsilon < b_n - b < \epsilon\)

      \(-\epsilon + b < b_n < \epsilon + b\)

      if \(0>\epsilon>b\implies\delta=b-\epsilon<0\), \(N \in \mathbb{N}\)

      Then \(b_{n}<\delta\)

      Since \(\lim_{n \to \infty} b_n = b\) and \(b < 0\), there exist \(\delta < 0\) and \(N_1 \in \mathbb{N}\) such that \(b_n < \delta\) for all \(n \geq N_1\).

      Suppose \(K < 0\) (**), then \(-K > 0\). Since \(\lim_{n \to \infty} a_n = \infty\), there exists \(N_2 \in \mathbb{N}\) such that for every natural number \(n \geq N_2\), we have \(a_n > -K\).

      Thus, \(a_n > -K > 0\) and \(b_n < \delta < 0\) for \(N = \max \{N_1, N_2\}\). Therefore,
      \(a_n > -K\)
      \(a_n b_n < -K b_n\)
      \(a_{n}b_{n}<-Kb_{n}-K\delta<0\)

      The last inequality holds for all \(n \geq N\). You can replace \(K\) in (**) with \(K / |\delta|\), then \(\lim_{n \to \infty} a_n b_n = -\infty\)

      I think it is unnecessary

      2. If \(\lim_{n \to \infty} a_n = -\infty\) and \(\lim_{n \to \infty} b_n = b \neq 0\) then \(\lim_{n \to \infty} a_n b_n =\begin{cases}-\infty, & \text{if } b > 0 \\\infty, & \text{if } b < 0\end{cases}\)

      Similarly....

  3. Find the limits of the following sequences:

    Trick

    \(\lim_{n \to \infty} \frac{P(n)}{Q(n)} = ?\)

    \(\frac{P(n)}{Q\left(n\right)}=\frac{a_{k}n^{k}+a_{k-1}n^{k-1}+\dots+a_1n+a_0}{b_{T}n^{T}+b_{T-1}n^{T-1}+\dots+b_1n+b_0}=\frac{n^{k}\left(a_{k}+\frac{a_{k-1}}{n}++\frac{a_1}{n^{k-1}}+\frac{a_0}{n^{k}}\right)}{n^{T}\left(b_{T}+\frac{b_{T-1}}{n}++\frac{b_1}{n^{T-1}}+\frac{b_0}{n^{T}}\right)}\)

    \(\text{where } \deg(P) = k, \, a_k \neq 0\)

    \(\text{and } \deg(Q) = T, \, b_T \neq 0\)

    Case \(T > K\)

    \(\lim_{n\to\infty}\frac{P(n)}{Q(n)}=\lim_{n\to\infty}\frac{n^{k}\left(a_{k}+\frac{a_{k-1}}{n}++\frac{a_1}{n^{k-1}}+\frac{a_0}{n^{k}}\right)}{n^{T}\left(b_{T}+\frac{b_{T-1}}{n}++\frac{b_1}{n^{T-1}}+\frac{b_0}{n^{T}}\right)}\)

    \(=\lim_{n\to\infty}\frac{1}{n^{T-K}}\cdot\lim_{n\to\infty}\left(\frac{a_{k}+\frac{a_{k-1}}{n}+\dots+\frac{a_1}{n^{k-1}}+\frac{a_0}{n^{k}}}{b_{T}+\frac{b_{T-1}}{n}+\dots+\frac{b_1}{n^{T-1}}+\frac{b_0}{n^{T}}}\right)\)

    Since \(\lim_{n \to \infty} \frac{1}{n^{T - K}} = 0\), it follows that \(\lim_{n \to \infty} \frac{P(n)}{Q(n)} = 0\)

    Case \(T = K\)

    \(\lim_{n\to\infty}\frac{P(n)}{Q(n)}=\lim_{n\to\infty}\frac{a_{k}+\frac{a_{k-1}}{n}+\dots+\frac{a_1}{n^{k-1}}+\frac{a_0}{n^{k}}}{b_{k}+\frac{b_{k-1}}{n}+\dots+\frac{b_1}{n^{k-1}}+\frac{b_0}{n^{k}}}=\frac{a_{k}}{b_{k}}\)

    As \(n \to \infty\), all terms involving \(\frac{1}{n}\) in the numerator and denominator go to \(0\)

    Case \(T < K\)

    \(\lim_{n \to \infty} \frac{P(n)}{Q(n)} = \lim_{n \to \infty} n^{K - T} \left( \frac{a_k + \frac{a_{k-1}}{n} + \dots + \frac{a_1}{n^{k-1}} + \frac{a_0}{n^k}}{b_T + \frac{b_{T-1}}{n} + \dots + \frac{b_1}{n^{T-1}} + \frac{b_0}{n^T}} \right)\)

    As \(n \to \infty\), \(n^{K - T} \to \infty\), so:

    \(\lim_{n \to \infty} \frac{P(n)}{Q(n)} = \begin{cases} +\infty & \text{if } \frac{a_k}{b_T} > 0 \\ -\infty & \text{if } \frac{a_k}{b_T} < 0 \end{cases}\)

    where \(a_k \neq 0\) and \(b_T \neq 0\)

    1. \((a_n) = \frac{n - 1}{n + 1}\) \(1\)
    2. \((b_n) = \frac{3n^2 + 2n + 2}{5n^2 + 4}\) \(\frac35\)
    3. \((c_n) = \frac{2n + 2}{5n^2 + 4}\) \(0\)
    4. \((d_n) = \frac{3n^2 + 2n + 2}{5n + 4}\) \(+\infty\)
    5. \((e_n) = \frac{2^n + n^2}{2^n + 5}\)

      \(\lim_{n \to \infty} \frac{2^n + n^2}{2^n + 5} = \lim_{n \to \infty} \frac{2^n \left( 1 + \frac{n^2}{2^n} \right)}{2^n \left( 1 + \frac{5}{2^n} \right)}\)

      Assume: \(\lim_{n \to \infty} \frac{P(n)}{a^n} = 0, \, a > 1\)

      \(\lim_{n \to \infty} \frac{2^n + n^2}{2^n + 5} = \lim_{n \to \infty} \frac{1 + \frac{n^2}{2^n}}{1 + \frac{5}{2^n}} = 1\)

      Or use Sandwich Theorem

      \(1 \leq \frac{2^n + n^2}{2^n + 5} \leq 1 + \frac{1}{n}\) for \(n > 3\)

      Since \(2^n + 5 \leq 2^n + n^2\), then \(1 \leq \frac{2^n + n^2}{2^n + 5}\)

      Also \(\frac{2^n + n^2}{2^n + 5} \leq \frac{2^n + n^2}{2^n} = 1 + \frac{n^2}{2^n} \leq 1 + \frac{1}{n}\)

      Claim: \(\frac{n^2}{2^n} \leq \frac{1}{n}\)

      \(n^3 \leq 2^n\) for \(n \geq 10\)

  4. \(\lim_{n \to \infty} \sqrt[n]{a} = ?\), where \(a > 0\)

    Claim: If \(1 < a\) and \(1 < b\), then \(a < b \iff a^n < b^n\)

    \(\Leftarrow\)) N.T.P. \(a^n<b^n\Rightarrow a<b\)

    \(a^{n}<b^{n}\begin{cases}a<b\rightarrow \text{ the only option}\\ a>b\rightarrow a^n>b^n\\ a=b\rightarrow a^n<b^n\end{cases}\)

    To prove: \(a < b \implies a^n < b^n\) (Exercise: Use induction.)

    Back to the proof

    • Case \(a = 1\): \(\lim_{n \to \infty} \sqrt[n]{1} = 1\)

    • Case \(a > 1\): \(\lim_{n \to \infty} \sqrt[n]{a} = 1\)

    For \(1<a<a^2<\dots<a^{n}<a^{n+1}\Rightarrow1<a^{n\frac{n+1}{n+1}}<a^{n+1\frac{n}{n}}\Rightarrow1<(\sqrt[n+1]{a})^{n(n+1)}<(\sqrt[n]{a})^{n(n+1)}\)

    Then \(1 < \sqrt[n]{a} < \sqrt[n+1]{a}\) as \(n \to \infty\)

    Claim: \(\sqrt[n]{a}\) is a decreasing function for \(a > 1\) and is bounded below by \(1\).

    Moreover, \(\forall n,1 < a^{\frac{1}{n}}\), then, by the theorem, the sequence converges to \(0<L\leq1\)

    Let's \(a^{\frac{1}{n}} = a_n\) and consider a subsequence of

    \(b_{n}=(a_{n})^2=\left(\sqrt[n]{a}\right)^2=\sqrt[n]{a}\cdot\sqrt[n]{a}\).

    take n is even subsequence

    \(\lim_{n\to\infty}b_{n}=\lim_{n\to\infty}\sqrt[n]{a}\cdot\lim_{n\to\infty}\sqrt[n]{a}=L\cdot L=L\)

    \(L(1 - L) = 0 \implies L = 1 \text{ or } L = 0\).

    Since \(L \leq 1\), we conclude that \(L = 1\).

    • Case \(0 < a < 1\): \(\lim_{n \to \infty} \sqrt[n]{a} = 1\)

    Since \(\frac{1}{a} > 1\), let \(c=\frac{1}{a}\).

    Then \(c^{\frac{1}{n}}=\frac{1}{a^{\frac{1}{n}}}\).

    \(\lim_{n\to\infty}c^{\frac{1}{n}}=\lim_{n\to\infty}\frac{1}{a^{\frac{1}{n}}}=1\).

  5. If \(a_n \geq 0\) and \(\lim_{n \to \infty} a_n = a \geq 0\), then \(\lim_{n \to \infty} \sqrt{a_n} = \sqrt{a}\).

    • Case \(a = 0\): Use the definition.

    We need to prove \(\lim_{n\to\infty}\sqrt{a_{n}}=0\), and we know \(\lim_{n\to\infty}a_{n}=0\).

    Then \(\forall\varepsilon_1,\exists n_0,n>n_0,\)\(|a_{n}-0|<\varepsilon\Rightarrow\sqrt{a_{n}}<\sqrt{\varepsilon}\Rightarrow\left|\sqrt{a_{n}}-0\left|\right.<\sqrt{\varepsilon_1}\right.<\varepsilon_2\)

    Then we can choose \(\varepsilon_2=\varepsilon_1^2\) * Case \(a > 0\):

    \(N.T.P.\left|\sqrt{a_{n}}-\sqrt{a}\right|<\varepsilon\\\text{We want use}\quad|a_{n}-a|<\epsilon.\\\text{Then }|\sqrt{a_{n}}-\sqrt{a}|=\frac{|a_{n}-a|}{\left|\sqrt{a_{n}}+\sqrt{a}\right|}<\epsilon\times\frac{1}{\left|\sqrt{a_{n}}+\sqrt{a}\right|}<\epsilon\times\frac{1}{\left|\sqrt{a_{n}}\right|+\left|\sqrt{a}\right|}<\epsilon\times\frac{1}{M+\sqrt{a}}\\\text{Thus, we need to take }(M+\sqrt{a})\varepsilon\)

    Example:

    \(\lim_{n \to \infty} \sqrt{1 + \frac{1}{n}} = \sqrt{\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)} = \sqrt{1} = 1\).