Skip to content

1.10

Power of Series:

\(\sum_{n=0}^\infty a_n x^n\) is centered at \(x=0\).

\(\{a_n\}\) is a sequence.

\(\sum_{n=0}^\infty a_n (x-a)^n\) is centered at \(x=a\).

Convergent set: \(CS\{a_n\} = \{ x \in \mathbb{R} : \sum_{n=0}^\infty a_n x^n \text{ converges} \}\).

Absolutely convergent set: \(AS\{a_n\} = \{ x \in \mathbb{R} : \sum_{n=0}^\infty |a_n x^n| \text{ converges} \}\).

\(AS\{a_n\} \subseteq CS\{a_n\}\).

Convergence Radius \(R\): \(f(x) = \sum_{n=0}^\infty a_n x^n\) is well-defined in \((-R, R)\), and \(f\) is continuous.


image

Examples:

  1. \(\sum_{n=1}^\infty \frac{x^n}{n!} = e^x\)

    \(\sum_{n=1}^\infty \left| \frac{x^n}{n!} \right|\)

    D'Alembert criterion: \(\lim_{n\to\infty}\left|\frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^{n}}{n!}}\right|=\lim _{n\to\infty}\left|x\cdot\frac{1}{n+1}\right|=|x|\cdot\lim_{n\to\infty}\frac{1}{n+1} <1\)

    Then \(\sum_{n=1}^\infty \frac{x^n}{n!}\) converges for all \(x\). Thus \(R = \infty\)

  2. \(\sum_{n=1}^\infty \frac{x^n}{3^n \sqrt{n}}\)

    \(\sum_{n=1}^\infty \left| \frac{x^n}{3^n \sqrt{n}} \right|\)

    Using D'Alembert's criterion:

    $\lim_{n\to\infty}\left|\frac{\frac{x^{n+1}}{3^{n+1}\sqrt{n+1}}}{\frac{x^{n}}{3^{n}\sqrt{n}}} \right|=\lim_{n\to\infty}\left|\frac{|x|}{3}\cdot\sqrt{\frac{n}{n+1}}\right|=\frac{|x|}{3}\cdot\lim_{n\to\infty}\sqrt{\frac{n}{n+1}}<\frac{|x|}{3}\cdot1=\frac{|x|}{3} $​

    For convergence: \(\frac{|x|}{3} < 1 \implies |x| < 3.\)

    Thus, \(R = 3\), and the radius of convergence is \(3\).


    For \(x = -3\): \(\sum_{n=1}^\infty \frac{(-3)^n}{3^n \sqrt{n}}= \sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}\)

    This series is conditionally convergent.

    For \(x = 3\): \(\sum_{n=1}^\infty \frac{(3)^n}{3^n \sqrt{n}}= \sum_{n=1}^\infty \frac{1}{\sqrt{n}}\)

    This is a divergent series.

    Convergent set (CS): \([-3, 3)\).

    Absolutely convergent set (ACS): \((-3, 3)\).

  3. \(\sum_{n=0}^\infty n! x^n = \sum_{n=0}^\infty n! |x|^n\)

    Using D'Alembert's criterion: \(\lim_{n\to\infty}\frac{(n+1)!|x|^{n+1}}{n!|x|^{n}}=\lim_{n\to\infty}(n+1)|x|=|x| \cdot\underbrace{\lim_{n\to\infty}(n+1)}_{r}<1\)

    Then \(|x|<\frac{1}{r}\rightarrow 0\), then \(|x|\leq 0\), then \(R=0\)

  4. \(\sum_{n=1}^\infty \frac{(-1)^{n+1} x^n}{n}\)

    Using D'Alembert's criterion:

    \(\lim_{n\to\infty}\left|\frac{\frac{(-1)^{n+2}x^{n+1}}{n+1}}{\frac{(-1)^{n+1}x^{n}}{n}} \right|=\lim_{n\to\infty}\left|x\cdot\frac{n}{n+1}\right|=|x|\cdot\lim_{n\to\infty} \frac{n}{n+1}<1\)

    For convergence: \(|x| < 1\).

    Convergent set (CS): \((-1, 1]\)

    Absolutely convergent set (ACS): \((-1, 1)\)

    Because

    At \(x = -1\): \(\sum_{n=1}^{\infty}\frac{(-1)^{n+1}(-1)^{n}}{n}=\sum_{n=1}^{\infty}\frac{-1}{n}= -\sum_{n=1}^{\infty}\frac{1}{n}\) which is divergent.

    At \(x = 1\): \(\sum_{n=1}^{\infty}\frac{(-1)^{n+1}(1)^{n}}{n}=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\). This series is conditionally convergent.

  5. \(\sum_{n=1}^\infty \frac{3^n x^n}{n^n}\)

    Using D'Alembert's criterion: \(\lim_{n\to\infty}\left|\frac{\frac{3^{n+1}x^{n+1}}{(n+1)^{n+1}}}{\frac{3^{n}x^{n}}{n^{n}}} \right|=3|x|\cdot\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^{n}\cdot\frac{1}{n+1}\)

    \(= 3|x| \cdot \lim_{n \to \infty} \left( \frac{1}{\frac{n+1}{n}} \right)^n \cdot \lim_{n \to \infty} \frac{1}{n+1} = 3|x| \cdot \lim_{n \to \infty} \left( \frac{1}{1 + \frac{1}{n}} \right)^n \cdot \lim_{n \to \infty} \frac{1}{n+1} = 3|x| \cdot \frac{1}{e} \cdot 0 = \frac{3|x|}{e} \cdot 0 < 1.\)

    Thus, \(R = \infty\).

  6. \(\sum_{n=1}^\infty \frac{1}{n + \sqrt{n}} \cdot x^n\)

    Using D'Alembert's criterion: \(\lim_{n\to\infty}\left|\frac{\frac{x^{n+1}}{n+1+\sqrt{n+1}}}{\frac{x^{n}}{n+\sqrt{n}}} \right|=\lim_{n\to\infty}\left|x\cdot\frac{n+\sqrt{n}}{n+1+\sqrt{n+1}}\right|\)

    Use comparasion test, we get it is \(=|x|<1\)

    \(R = 1\)

    Absolutely convergent set (ACS): \((-1,1)\) and convergent set (CS): \([-1,1)\)

    Because for \(x = -1\): \(\sum_{n=1}^\infty \frac{(-1)^n}{n + \sqrt{n}}\)


    Apply the Alternating Test (Leibniz Test):

    Check that:

    1. \(\lim_{n \to \infty} \frac{1}{n + \sqrt{n}} = 0.\)
    2. \(\frac{1}{n + \sqrt{n}}\) is decreasing.

    Conclusion:

    By the Leibniz test, the series is conditionally convergent.