Skip to content

11.7 Series

Series

Theorem

If \(\sum_{n=1}^{\infty}\alpha^{n}\) is convergent, then \(a_{n}\xrightarrow{n\to\infty}0\)

Proof

By hypothesis we know that \(S_n=\sum_{n=1}^{\infty}\alpha^{n}\) is a convergent sequence, let \(l=\lim_{n\to\infty}S_{n}\)

But we know that \(S_n=S_{n-1}+a_n\), then \(a_n=S_n-S_{n-1}\) and \(\lim_{n\to\infty}S_{n}=l\Rightarrow\lim_{n\to\infty}S_{n-1}=l\)

Then \(\lim_{n\to\infty}a_{n}=\lim_{n\to\infty}S_{n}-\lim_{n\to\infty}S_{n-1}=l-l=0\)

Corollary

If \(a_n\) is not convergent, then \(\sum_{n=1}^{\infty}\alpha^{n}\) is not convergent.

Remark

The converse is FALSE

For example, \(a_n=\frac1n\) and \(a_n\to 0\) is convergent, but \(\sum_{n=1}^{\infty}\frac{1}{n}=\infty\) is not convergent

Definition

We say that a series \(\sum_{n=1}^{\infty}\alpha^{n}\) is absolutely convergent if \(\sum_{n=1}^{\infty}|\alpha^{n}|\) is convergent

Example

If \(a_{n}=1,-\frac12,\frac13,-\frac14,\ldots\) which is \(a_{n}=\frac{\left(-1\right)^{n+1}}{n}\) it can be proved that \(\sum_{n=1}^{\infty}\alpha^{n}=\log\left(2\right)=\ln\left(2\right)\)

Thus \(\sum_{n=1}^{\infty}\alpha^{n}\) is convergent but not absolutely convergent since \(|a_n|=\frac1n\) and \(\sum_{n=1}^{\infty}\frac{1}{n}=\infty\)

Theorem

If \(\sum_{n=1}^{\infty}\alpha^{n}\) is absolutely convergent, then \(\sum_{n=1}^{\infty}\alpha^{n}\) is convergent.

(The converse is false: The previous example shows a convergent series that is not absolutely convergent)

Example

\(a_{n}=\begin{cases}\frac{1}{2^{n}}~~~~\text{ if n is not prime}\\ -\frac{1}{2^{n}}~\text{ if n is prime}\end{cases}\) which is \(a_{n}=(\frac12,-\frac14,-\frac18,\frac{1}{16},-\frac{1}{32},\frac{1}{64},-\frac{1}{128},\ldots)\)

Is \(\sum_{n=1}^{\infty}a^{n}\) convergent?

Yes, \(|a_{n}|=\frac{1}{2^{n}}\) and \(\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty}\frac{1}{2^{n}}=1\Rightarrow\) is absolutely convergent

By theorem, \(\sum_{n=1}^{\infty}a_{n}\) is convergent.

Proof

Hypothesis: \(\sum_{n=1}^{\infty}\alpha^{n}\) is absolutely convergent, then \(\sum_{n=1}^{\infty}\left|\alpha^{n}\right|<\infty\) (convergent)

Then \(S_{n}=\sum_{k=1}^{n}\left|\alpha^{k}\right|\) is convergent. N.T.P. \(S_{n}^{\prime}=\sum_{k=1}^{n}\alpha^{k}\) is convergent

Then \(\forall\varepsilon>0,\exists n_0:n>n_0\Rightarrow\left|S_{n}-L\right|<\varepsilon\) and we want \(\forall\varepsilon>0,\exists n_0:n>n_0\Rightarrow\left|S_{n}^{\prime}-L\right|<\varepsilon\)

But we don't know the limit, thus we can use Cauchy Sequence.

​#Method tool: Cauchy Criterions to deal with unknown limit#​

Then we have \(\forall\varepsilon>0,\exists n_0:m,n>n_0\Rightarrow\left|S_{n}-S_{m}\right|<\varepsilon\).

Claim: \((S'_n)\) is also Cauchy Sequence

If \(n,m>n_0\), then \(\left|S^{\prime}_{n}-S^{\prime}_{m}\right|=\left|\sum_{k=1}^{n}\alpha^{k}-\sum_{k=1}^{m}\alpha^{k}\right|=\left|\sum_{k=m+1}^{n}\alpha^{k}\right|\leq\sum_{k=m+1}^{n}\left|\alpha^{k}\right|=\left|S_{n}-S_{m}\right|<\varepsilon\)

Thus\((S'_n)\) is Cauchy Sequence, by A sequence is convergent if and only if it is a Cauchy sequence.

Thus \(\sum_{n=1}^{\infty}\alpha^{n}\) is convergent

Example 2

\(a_{n}=\frac12,\frac14,\frac18,\frac{1}{16},\frac{1}{32},\frac{1}{64},\frac{1}{128},\ldots\)image

We cannot do that because after some periods, we never can reach the top from bottom since it is convergent

However, \(\frac1n\) can do that image

Algebra of Series

Theorem

  1. If \(\sum_{n=1}^{\infty}a^{n}=A\) and \(\sum_{n=1}^{\infty}b^{n}=B\) are convergent, then \(\forall\alpha,\beta\in\mathbb{R},\sum_{n=1}^{\infty}\left(\alpha a_{n}+\beta b_{n}\right)\) is convergent and \(\sum_{n=1}^{\infty}\left(\alpha a_{n}+\beta b_{n}\right)=\alpha A+\beta B\)

    Proof

    Let \(A_{n}=\sum_{k=1}^{n}a^{k}\), \(B_{n}=\sum_{k=1}^{n}b^{k}\) and \(C_{n}=\sum_{k=1}^{n}\left(\alpha a_{k}+\beta b_{k}\right)\), hypothesis: \(\lim_{n\to\infty}A_{n}=A\) and \(\lim_{n\to\infty}B_{n}=B\)

    We want (Thesis): \(\lim_{n\to\infty}C_{n}=\alpha A+\beta B\)

    We know \(C_{n}=\sum_{k=1}^{n}\left(\alpha a_{k}+\beta b_{k}\right)=\sum_{k=1}^{n}\alpha a_{k}+\sum_{k=1}^{n}\beta b_{k}=\alpha A_{n}+\beta B_{n}\)

    From algebra of sequences we know: \(\lim_{n\to\infty}C_{n}=\alpha\lim_{n\to\infty}A_{n}+\beta\lim_{n\to\infty}B_{n}=\alpha A+\beta B\)

  2. If \(0\leq a_n\leq b_n\), then

    1. If \(\sum_{n=1}^{\infty}b^{n}<\infty\Rightarrow\sum_{n=1}^{\infty}a^{n}<\infty\)

      Let \(B_{n}=\sum_{k=1}^{n}b_{k}\). By hypothesis: \(\lim_{n\to\infty}B_{n}=B<\infty\)

      Let \(A_{n}=\sum_{k=1}^{n}a_{k}\). By hypothesis: \(a_k\leq b_k\), then \(A_n\leq B_n\)

      But \(A_n\) and \(B_n\) are monotonic increasing because \(a_n,b_n\geq 0\)

      Then \(B=sup(B_n)\), then \(B_{n}\leq B,\forall n\Rightarrow A_{n}\leq B_{n}\leq B\Rightarrow A_{n}\) is bounded above.

      Since \(A_n\) is also monotonic increasing, thus \(A_n\) is convergent \(\Rightarrow\) \(\sum_{n=1}^{\infty}a_{n}<\infty\)​ 2. If \(\sum_{n=1}^{\infty}a^{n}=\infty\Rightarrow\sum_{n=1}^{\infty}b^{n}=\infty\)

      If \(\sum_{n=1}^{\infty}a^{n}=+\infty\), let \(A_{n}=\sum_{k=1}^{n}a_{k}\) and we have \(\lim_{n\to\infty}A_{n}=+\infty\)

      Thus \(\forall M>0,\exists n_0,\forall n>n_0,A_n>M\) (Hypothesis)

      We need to prove \(\forall M>0,\exists n_0,\forall n>n_0,B_{n}>M\) (Thesis)

      Since \(b_n\geq a_n\geq 0\), then \(B_n>A_n\). Then we use hypothesis here, \(B_n>A_n>M\)

      Therefore, \(\sum_{n=1}^{\infty}b^{n}=\infty\)

Telescope sums

Examples

Is \(\sum_{n=1}^{\infty}\frac{1}{n^2}_{}<\infty\)?

Yes, because \(0\leq\frac{1}{n^2}<\frac{1}{n\left(n-1\right)},\forall n\geq2\)

If I prove that \(\sum_{n=1}^{\infty}\frac{1}{n\left(n-1\right)}_{}<\infty\), then by previous theorem \(\sum_{n=1}^{\infty}\frac{1}{n^2}_{}<\infty\)

Easily

However, we only can know \(\sum_{n=1}^{\infty}\frac{1}{n^2}_{}<\infty\), but we can not know what the exactly the limit is.

It's known that \(\sum_{n=1}^{\infty}\frac{1}{n^2}_{}=\frac{\pi^2}{6}\approx1.6\)

In general

\(\sum_{n=1}^{\infty}\frac{1}{n^2}_{}<\infty,\forall q>1.\sum_{n=1}^{\infty}\frac{1}{n^2}=\text{rational number}\times\pi^{q}\text{ for q even}\)

P-series

Consider \(\sum_{n=1}^{\infty}\frac{1}{n^{p}}\Rightarrow\begin{cases}\text{Convergent, if }p>1\\ \text{Divergent, if }p\leq1\end{cases}\)

Proof

When \(p>1\), we have already known \(\sum_{n=1}^{\infty}\frac{1}{n^2}_{}\) is convergent.

Then we use theorem: Since \(0<\frac{1}{n^{p}}\leq\frac{1}{n^2}_{}\left(p\geq2\right)\) and \(\sum_{n=1}^{\infty}\frac{1}{n^2}_{}<\infty\), then \(\sum_{n=1}^{\infty}\frac{1}{n^{p}}_{}<\infty\)

When \(p\leq 1\), we have already known \(\sum_{n=1}^{\infty}\frac{1}{n}_{}\) is divergent.

Then we use theorem: Since \(0<\frac{1}{n}\leq\frac{1}{n^{p}}_{}\left(p\leq1\right)\) and \(\sum_{n=1}^{\infty}\frac{1}{n^{}}=\infty\), then \(\sum_{n=1}^{\infty}\frac{1}{n^{p}}_{}=\infty\)

Definition

If \(b_{n}=a_{n}-a_{n+1}\), we have \(\sum_{k=1}^{n}b_{k}=a_1-a_{n+1}\)

Then \(\lim S_{n}=\lim_{n\to\infty}\left(a_1-a_{n+1}\right)=a_1-\lim_{n\to\infty}a_{n+1}=a_1\)

Proposition

If \(b_n=a_n-a_{n+1}\) and \(a_n\to 0\), then \(\sum_{k=1}^{\infty}b_{k}\) is convergent to \(a_1\)

Example

  1. \(\sum_{n=1}^{\infty} \frac{\cos(n^2 + \frac{1}{n})}{n^3} = a_n < \infty ?\)

    Yes \(\quad 0 \leq |a_n| \leq \frac{1}{n^3} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^3} < \infty\)

    Sandwich \(\Rightarrow \sum_{n=1}^{\infty} |a_n| < \infty \Rightarrow \sum_{n=1}^{\infty} a_n\) is absolutely convergent

    \(\Rightarrow \sum_{n=1}^{\infty} a_n < \infty\)

  2. \(\sum_{n=1}^{\infty} \frac{17^n + 3^n}{5^{2n}} < \infty ?\)

    Since \(\left(5^2\right)^n = 25^n\), then \(\sum_{n=1}^{\infty} \left(\frac{17}{25}\right)^n + \sum_{n=1}^{\infty} \left(\frac{3}{25}\right)^n < \infty\)

    \(\frac{17}{25} < 1, \quad \frac{3}{25} < 1\)