11.18&21 Limit of functions
Limit of functions
Let \(f: X \to \mathbb{R}\), \(X \subseteq \mathbb{R}\). We are led by the following question: If \(a_n \subseteq X\) and \(\lim_{n \to \infty} a_n = \ell\), \(\ell \in X\), is it true that \(\lim_{n \to \infty} f(a_n) = f(\ell)\)?
Yes, when the function is continuous.
Definition
Definition: Let \(f: X \to \mathbb{R}\), \(X \subseteq \mathbb{R}\), and let \(x_0\) be a limit point of \(X\). Then we say \(\lim_{x \to x_0} f(x) = \ell\) if \(\forall \epsilon > 0, \exists \delta > 0\) such that \(0<|x-x_0|<\delta,x\in X\implies|f(x)-\ell|<\epsilon\).
Example
-
Let \(f : \mathbb{R} \to \mathbb{R}\) be defined by \(f(x) = x\). Then \(\lim_{x \to x_0} f(x) = x_0\).
Proof: Given \(\varepsilon > 0\), take \(\delta = \varepsilon\). Now: \(0 < |x - x_0| < \delta \implies |x - x_0| < \varepsilon \implies |f(x) - x_0| < \varepsilon\).
-
If \(f : \mathbb{R} \to \mathbb{R}\) and \(f(x) = c\), then \(\lim_{x \to x_0} f(x) = c\)
Proof: Given \(\varepsilon > 0\), take \(\delta = 3\).
Now: \(0<|x-x_0|<3\implies.\ldots\implies|f(x)-c|<\varepsilon\).
-
\(f: \mathbb{R} \to \mathbb{R}\). \(f(x)=\begin{cases}x & x\in\mathbb{Q},\\ 0 & x\notin\mathbb{Q}.\end{cases}\)
Ex: \(\lim_{x \to 0} f(x) = 0\) \(\lim_{x \to x_0, \, x_0 \neq 0} f(x)\) does not exist.
-
Let \(f : \mathbb{R} \to \mathbb{R}\) be defined as follows:
\(f(x)=\begin{cases}\frac{1}{q}, & \text{if }x=\frac{p}{q}\in\mathbb{Q},\text{ where }\frac{p}{q}\text{ is in reduced form and }q>0,\\ 0, & \text{if }x\notin\mathbb{Q}\text{ or }x=0\end{cases}\)
Find \(\lim_{x \to 1} f(x) = \, ?\)
Hypothesis: \(|\frac{p}{q}-1|<\delta\) Thesis: \(\frac1q<\varepsilon\)
Since \(|\frac{p}{q}-1|<\delta\), then \(|\frac{p-q}{q}|<\delta\Rightarrow\frac{1}{q}<\frac{\left|p-q\right|}{q}<\delta\Rightarrow\delta>\frac{1}{q}\)
Thus we can just choose \(\delta =\varepsilon\)
Or
\(\lim_{x \to 1} f(x) = 0\): Let \(\varepsilon > 0\). We need to show that \(|f(x) - 0| < \varepsilon\).
Let \(q_0\) be the first such that \(\frac{1}{q_0} < \varepsilon\).
Let \(A=\left\{\frac11,\frac12,\frac22,\frac13,\frac23,\frac33,\frac14,\frac24,\frac34,\frac44,\dots,\frac{1}{q_0-1},\frac{2}{q_0-1},\frac{3}{q_0-1},\dots,\frac{q_0-1}{q_0-1}\right\}.\)
\(A\) is exactly the set of \(a \in \mathbb{R}\) such that \(a > 0\) and \(|f(a)| > \varepsilon\).
Let \(\delta\) be smaller than \(|a - 1|\) for all \(a \in A, a \neq 1\)
So that \(0<\delta < |a - 1|\) for all \(a \in A, a \neq 1\)
Then consider \(0 < |x - 1| < \delta \implies x \notin A \implies |f(x) - 0| < \varepsilon\).
(\(\delta = \frac{1}{q_0}\) works.)
This proves that \(\lim_{x \to 1} f(x) = 0\).
And "the same argument" shows that \(\lim_{x \to x_0} f(x) = 0\) for all \(x_0 \in \mathbb{R}\).
Proposition
Recall
If \(f: X \to \mathbb{R}\) and \(\lim_{x \to x_0} f(x) = \ell_1\) and \(\lim_{x \to x_0} f(x) = \ell_2\), then \(\ell_1 = \ell_2\).
Proof
We have \(\forall\epsilon_1>0,\exists\delta_1>0\) such that \(0<|x-x_0|<\delta_1,x\in X\implies|f(x)-\ell_1|<\epsilon_1\).
Then we have \(\ell_1-\varepsilon_1<f(x)<\varepsilon_1+\ell_1\)
And \(\forall\epsilon_2>0,\exists\delta_2>0\) such that \(0<|x-x_0|<\delta_2,x\in X\implies|f(x)-\ell_2|<\epsilon_2\).
Then we have \(\ell_2-\varepsilon_2<f(x)<\varepsilon_2+\ell_2\)
Let's take \(\varepsilon=\varepsilon_1=\varepsilon_2=\frac{|\ell_1-\ell_2|}{2}>0\)
Assume \(\ell_1>\ell_2\), then \(\frac{\ell_1+\ell_2}{2}<f(x)\) and \(\frac{\ell_1+\ell_2}{2}>f(x)\)
Contradiction, thus they must be same.
Algebra of Limits
If \(\lim_{x \to a} f(x) = l_1\) and \(\lim_{x \to a} g(x) = l_2\) and \((f, g : X \to \mathbb{R}, a \text{ is a limit point of } X)\)
Then:
-
\(\lim_{x \to a} (f + g)(x) = l_1 + l_2\)
\(\forall \epsilon > 0, \exists \delta > 0\) such that \(0<|x-a|<\delta\implies|f(x)-\ell_1|<\frac{\epsilon}{2}\)
\(\forall \epsilon > 0, \exists \delta > 0\) such that \(0<|x-a|<\delta\implies|g(x)-\ell_2|<\frac{\epsilon}{2}\)
\(|f\left(x\right)+g(x)-\left(\ell_1+\ell_2\right)|=|f\left(x\right)-\ell_1+g(x)-\ell_2|\leq|f\left(x\right)-\ell_1\left|+\right|g(x)-\ell_2|=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\)
-
\(\lim_{x \to a} (f \cdot g)(x) = l_1 \cdot l_2\)
\(\lim_{x\to a}f(x)=\ell_1,\,\forall\frac{\varepsilon}{2\left(1+\left|\ell_2\right|\right)}>0,\,\exists\delta_1>0\,\text{such that}\,\forall x\in\text{Dom}f\,\text{and}\,0<|x-a|<\delta_1,\,\text{then}\,|f(x)-\ell_1|<\frac{\varepsilon}{2\left(1+\left|\ell_2\right|\right)}\)
\(\lim_{x\to a}g(x)=\ell_2,\,\frac{\forall\varepsilon}{2\left(1+\left|\ell_1\right|\right)}>0,\,\exists\delta_2>0\,\text{such that}\,\forall x\in\text{Dom}g\,\text{and}\,0<|x-a|<\delta_2,\,\text{then}\,|g(x)-\ell_2|<\frac{\varepsilon}{2\left(1+\left|\ell_1\right|\right)}\)
We must show that \(\forall\varepsilon>0,\,\exists\delta>0\,\text{such that}\,\forall x\in\text{Dom}f\cap\text{Dom}g\,\text{and}\,0<|x-a|<\delta,\,\text{we have}\,|f(x)g(x)-\ell_1\ell_2|<\varepsilon.\)
\(\left|f(x)g(x)-\ell_1\ell_2\right|=\left|f(x)g(x)-\ell_1g(x)+\ell_1g(x)-\ell_1\ell_2\right|\)
\(=\left|g(x)(f(x)-\ell_1)+\ell_1(g(x)-\ell_2)\right|\) \(\leq\left|g(x)\right|\cdot\left|f(x)-\ell_1\right|+\left|\ell_1\right|\cdot\left|g(x)-\ell_2\right|\)
I need an upper bound for \(g(x)\): \(\left|g(x)\right|=\left|g(x)+\ell_2-\ell_2\right|\) \(<\left|g(x)-\ell_2\right|+\left|\ell_2\right|\) \(<1+\left|\ell_2\right|\)
Assume that \(\left|g(x)-\ell_2\right|<1\) and this holds for \(0 < |x-a| < \delta_3\).
Back to \(\left|f(x)g(x)-\ell_1\ell_2\right|\leq\left|g(x)\right|\cdot\left|f(x)-\ell_1\right|+\left|\ell_1\right|\cdot\left|g(x)-\ell_2\right|\)
\(<(1+|\ell_2|)|f(x)-\ell_1|+|\ell_1||g(x)-\ell_2|\)
\(<(1+|\ell_2|)|f(x)-\ell_1|+(|\ell_1|+1)|g(x)-\ell_2|<\varepsilon\)
\(\delta = \min\{\delta_1, \delta_2, \delta_3\}\)
With this \(\delta\), the definition holds.
-
If \(l_1 \neq 0 \implies \exists \delta > 0 : 0 < |x - a| < \delta \implies \frac{|l_1|}{2} < |f(x)| < \frac{3|l_1|}{2}\). Also, \(a\) is a limit point of \(\tilde{X} = \{x \in X : f(x) \neq 0\}\)
\(\exists\delta>0\) such that \(0<|x-a|<\delta,x\in X\implies|f(x)-\ell|<\frac{\left|\ell_1\right|}{2}\)
Just take \(\varepsilon=\frac{\left|\ell_1\right|}{2}\)
-
If \(l_1 \neq 0 \implies \lim_{x \to a} \frac{1}{f(x)} = \frac{1}{l_1}\)
\(\forall\epsilon_1>0,\exists\delta_1>0\) such that \(0<|x-a|<\delta_1,x\in X\implies|f(x)-\ell_1|<\epsilon_1\).
If \(l_1\neq0\implies\exists\delta_2>0:0<|x-a|<\delta_2\implies\frac{|l_1|}{2}<|f(x)|<\frac{3|l_1|}{2}\).
\(|\frac{1}{f(x)}-\frac{1}{\ell_1}|=\left|\frac{\ell_1-f\left(x\right)}{\ell_1f\left(x\right)}\right|=\frac{\left|\ell_1-f\left(x\right)\right|}{\left|\ell_1\right|\left|f\left(x\right)\right|}\leq\frac{\varepsilon_1}{\frac{\ell_1^2}{2}}=\frac{2\varepsilon_1}{\ell_1^2}=\varepsilon\)
Just take \(\varepsilon_1=\frac{\varepsilon_{}\ell_1^2}{2}\) and \(\delta=\min\{\delta_1,\delta_2\}\)
-
If \(l_2\neq0\implies\lim_{x\to a}\left(\frac{f}{g}\right)\left(x\right)=\frac{l_1}{l_2}\)
Just use times
Sandwich Theorem
If \(f_1, g, f_2 : X \to \mathbb{R}\) and \(a\) is a limit point of \(X\), and \(\lim_{x \to a} f_1(x) = l = \lim_{x \to a} f_2(x)\) and \(f_1(x) \leq g(x) \leq f_2(x)\) \(\forall x \in X, x \neq a\), then \(\lim_{x \to a} g(x) = l\).
Proof: Let \(\varepsilon > 0\). We know that \(\exists \delta_1, \delta_2 > 0\) such that: \(\begin{cases} 0<|x-a|<\delta_1\implies|f_1(x)-l|<\varepsilon,\\ 0<|x-a|<\delta_2\implies|f_2(x)-l|<\varepsilon.\end{cases}\)
Let \(\delta = \min(\delta_1, \delta_2)\).
Now: \(f_1(x)\leq g(x)\leq f_2(x)\implies f_1(x)-l\leq g(x)-l\leq f_2(x)-l\)
\(\implies |g(x) - l| \leq \max\{|f_1(x) - l|, |f_2(x) - l|\}\).
Therefore: If \(0 < |x - a| < \delta\), then \(0 < |x - a| < \delta_1\) and \(0 < |x - a| < \delta_2\), \(\implies\max\{|f_1(x)-l|,|f_2(x)-l|\}<\varepsilon\implies|g(x)-l|<\varepsilon\)
Theorem
Let \(g : X \to \mathbb{R}, f : Y \to \mathbb{R}\). Suppose that \(g(x) \in Y \ \forall x \in X \ (g(X) \subseteq Y)\).
Suppose \(a\) is a limit point of \(X\) and \(\lim_{x \to a} g(x) = b\) and \(b\) is a limit point of \(Y\) and \(\lim_{y \to b} f(y) = c\) where \(g(x)\neq b,\forall x\) (Since \(f\) may not defined at \(b\))
Then \(\lim_{x \to a} f(g(x)) = c\).
Proof: Let \(\varepsilon > 0\).
We know that \(\exists \delta_1 > 0 : 0 < |y - b| < \delta_1 \implies |f(y) - c| < \varepsilon\) (since \(\lim_{y \to b} f(y) = c\)).
Take \(\varepsilon_2=\delta_1>0\)
Since \(\lim_{x \to a} g(x) = b\), so \(\exists \delta_2 > 0 : 0 < |x - a| < \delta_2 \implies |g(x) - b| < \varepsilon_2 = \delta_1\)
Let \(\delta = \delta_2 > 0\). If \(0 < |x - a| < \delta\), then \(|g(x) - b| < \delta_1\)\(\implies |f(g(x)) - c| < \varepsilon\).
Proposition
Suppose that \(\forall x\in(x_0-\delta,x_0+\delta),|g(x)|<M\), then \(\lim_{x \to x_0} (x - x_0)g(x) = 0\).
Proof:
Given \(\varepsilon > 0\), let \(\delta = \min\left(\frac{\varepsilon}{M}, \delta_0\right)\).
If \(0 < |x - x_0| < \delta\), then \(|x - x_0| < \delta_0 \implies |g(x)| < M\).
Thus, \(|(x - x_0)g(x)| = |x - x_0| \cdot |g(x)| < |x - x_0| \cdot M\)
Then \(|(x-x_0)g(x)|<\delta\cdot M\)
Since \(\delta \leq \frac{\varepsilon}{M}\), then \(|(x - x_0)g(x)| < \varepsilon\).