Skip to content

11.14 The exponential function

Example of theorem

Consider \(x \in \mathbb{R}\), \(\sum_{n=0}^{\infty} \frac{x^n}{n!}\) is A.C. \(\forall x\).(from)

From previous theorem: \(\sum_{k=0}^{\infty} \frac{x^k}{k!} \sum_{k=0}^{\infty} \frac{y^k}{k!} = \sum_{n=0}^{\infty} C_n\)

\(C_{n}=\sum_{k=0}^{n}a_{k}\cdot b_{n-k}=\sum_{k=0}^{n}\frac{x^{k}}{k!}\cdot\frac{y^{n-k}}{(n-k)!}\)

= \(\frac{1}{n!}\sum_{k=0}^{n}\frac{n!}{k!(n-k)!}x^{k}y^{n-k}=\frac{1}{n!}\sum_{k=0}^{n}\binom{n}{k}x^{k}y^{n-k}\) \(\Rightarrow C_n = \frac{(x + y)^n}{n!}\)

Therefore we have proved

Theorem: \(\left( \sum_{n=0}^{\infty} \frac{x^n}{n!} \right) \left( \sum_{n=0}^{\infty} \frac{y^n}{n!} \right) = \sum_{n=0}^{\infty} \frac{(x + y)^n}{n!}\)

The exponential function

Let us call \(\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad \forall x \in \mathbb{R}\).

We have proved: \(\exp(x + y) = \exp(x) \exp(y), \quad \forall x, y \in \mathbb{R}\).

We will see that \(\exp(q) = e^q, \quad \forall q \in \mathbb{Q}\).

Example

Recall that: \(e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2.71 \ldots\)

Parenthesis: \(2^x\) with \(x \in \mathbb{R}\)?

\(2^{5/2} = \sqrt{2^5} = \sqrt{32} = (2^{1/2})^5\)

\(2^{3/2} = \sqrt{2^3} = \sqrt{8} = (2^{1/2})^3\)

\(2^{\sqrt{2}} \approx 2^{1.414} = \sqrt[1000]{2^{1414}} = \left(\sqrt[1000]{2}\right)^{1414}\)

Theorem

\(\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n\)

​#Method tool: Eliminating variable with limit#​

Proof

We want to prove \(\lim_{n \to \infty} \sum_{k=0}^{n} \frac{x^k}{k!} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n\)

From the expansion: \(\left(1 + \frac{x}{n}\right)^n = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{x}{n}\right)^k 1^{n-k}\)

\(= \sum_{k=0}^{n} \frac{x^k}{k!} \cdot \frac{n!}{(n-k)! \, n^k}\) \(= \sum_{k=0}^{n} \frac{x^k}{k!} \cdot \frac{n (n-1) (n-2) \cdots (n-k+1)}{n^k}\)

\(= \sum_{k=0}^{n} \frac{x^k}{k!} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right)\).

This implies

  1. \(\left(1+\frac{x}{n}\right)^{n}\leq\sum_{k=0}^{n}\frac{x^{k}}{k!}\Rightarrow\widetilde{\exp}(x)\leq\exp(x)\). (take limit)

  2. Consider \(n > m\) arbitrary: \(\left(1+\frac{x}{n}\right)^{n}\geq\sum_{k=0}^{m}\frac{x^{k}}{k!}\left(1-\frac{k-1}{n}\right)^{k}\) where \((1 - \frac{k-1}{n}) > (1 - \frac{m}{n})\) for \(0 < k \leq m\).

    Thus \(\geq(1-\frac{m}{n})^{m}\sum_{k=0}^{m}\frac{x^{k}}{k!}\)

    Consider \(m\) fixed and take \(\lim_{n \to \infty}\): \(\widetilde{\exp}(x) \geq \sum_{k=0}^{m} \frac{x^k}{k!} \quad \forall m\)

    Now \(\lim_{m \to \infty}\): \(\widetilde{\exp}(x) \geq \sum_{k=0}^{\infty} \frac{x^k}{k!} = \exp(x)\)

    From (1) and (2): \(\widetilde{\exp}(x) = \exp(x)\)

Proposition

\(\exp(q) = e^q \quad \forall q \in \mathbb{Q}\)

Proof

We want to prove \(\lim_{n \to \infty} \left(1 + \frac{q}{n}\right)^n = \left(\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n\right)^q = e^q\)

  1. Assume \(q \in \mathbb{N}\), \(\lim_{n \to \infty} \left(1 + \frac{q}{n}\right)^n\)

    Trick: to cancel \(q\), consider \(n_k = q \cdot k\)

    \(= \lim_{k \to \infty} \left(1 + \frac{q}{n_k}\right)^{n_k}\)\(= \lim_{k \to \infty} \left(1 + \frac{q}{q \cdot k}\right)^{q \cdot k}\)\(= \lim_{k \to \infty} \left(1 + \frac{1}{k}\right)^{q \cdot k}\)

    \(= \left(\lim_{k \to \infty} \left(1 + \frac{1}{k}\right)^k\right)^q\)\(= e^q\)

  2. Now let \(q = \frac{a}{b}\) with \(a, b \in \mathbb{N}\). We want to prove:

    \(\lim_{n \to \infty} \left(1 + \frac{a/b}{n}\right)^n = \left[\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n\right]^{a/b}\)

    \(\;\iff\;\left(\lim_{n\to\infty}\left(1+\frac{\frac{a}{b}}{n}\right)^{n}\right)^{b}=\left(\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n}\right)^{a}\)

    Since \(a,b\in\N\), we already know in 1

    \(\;\iff\;\lim_{n\to\infty}\left(1+\frac{\frac{a}{b}\cdot b}{n}\right)^{n}=\lim_{n\to\infty}\left(1+\frac{a}{n}\right)^{n}\)

    This is true.

It remains \(q < 0\) and is left as exercise.

Summarizing

\(\exp(x) := \sum_{k=0}^{\infty} \frac{x^k}{k!}\) by definition

Theorem: \(\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n\)

Also: \(\exp(x + y) = \exp(x) \cdot \exp(y)\)

\(\exp(q) = e^q \quad \forall q \in \mathbb{Q}\)

\(\exp(1) = e\)

\(\exp(0) = 1\)

These define the exponential function.

Def: If \(x \in \mathbb{R}\), define \(e^x = \exp(x)\).

By definition, \(e = \exp(1) = \sum_{k=0}^{\infty} \frac{1^k}{k!} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2.71 \ldots\)

Topology

Definition

Let \(X\subseteq \R\) and \(x_0\in \R\), we say that

  1. \(x_0\) is interior (inner point) of \(X\) if \(\exists\delta>0:(x_0-\delta,x_0+\delta)\subseteq X\)

    Example: \(X=(3,5]\), \(x_0=4.6\) is interior and \(x_0=5\) is not

    The set of inner points of \(X\) is denoted by \(\mathring{X}\)

  2. \(x_0\) is an exterior point if \(\exists \delta > 0\) such that \((x_0-\delta,x_0+\delta)\cap X=\emptyset\)

    Or if \(x_0\) is the interior of the \(X^c\) which is \((x_0-\delta,x_0+\delta)\subset X^{c}\Rightarrow(x_0-\delta,x_0+\delta)\cap X=\emptyset\)

  3. \(x_0\) is limit point of \(X\) if \(\forall\delta>0:\left\lbrack(x_0-\delta,x_0)\cup(x_0,x_0+\delta)\right\rbrack\cap X\neq\emptyset\)

    or \(:0<|x-x_0|<\delta\)

    Example: \(x_0=5\) is limit point of \(X=(3,5]\)

    \(x_0=3\) is limit point of \(X=(3,5]\)

    \(x_0=5\) is not a limit point of \(X=(1,2)\cup \{5\}\cup(6,7)\)

  4. \(x_0\) is a boundary point(extreme point) if \(\forall \delta > 0\), \(\exists y\in X,z\notin X\) with \(|x_0-y|<\delta\), \(|x_0-z|<\delta\)

    The set of boundary points is denoted by \(\partial A\)

    Equivalence: \(x_0\) is a boundary point of \(A\) if \(\forall \delta > 0 \quad (x_0 - \delta, x_0 + \delta) \cap A \neq \emptyset\) and \((x_0 - \delta, x_0 + \delta) \cap A^c \neq \emptyset\)

  5. \(x_0\) is isolated point if \(x_0\in X\) and \(\exists \delta>0\) such that \((x_0-\delta,x_0+\delta)\cap X=\left\lbrace x_0\right\rbrace\)

Example

\(A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}\)

\(0 \notin A\)

image

  1. Is \(0\) a limit point? Yes

    \(\forall \delta > 0, \, \exists \, \frac{1}{N}\) such that \(\frac{1}{N} \in (0 - \delta, 0 + \delta) \cap A\)

    Is \(1\) a limit point? No

  2. Inner points

    image

    \(\mathring{A}=\emptyset\)

  3. Exterior points

    image

    \((-\infty,0)\cup(1,+\infty)\cup\left(\frac{1}{n+1},\frac{1}{n}\right)_{n\in\mathbb{N}}\)

  4. Boundary of A

    image

    \(\partial A=A\cup\{0\}\)

\(B=[-1,0)\cup(0,1)\)

  1. Limit points \([-1, 0] \cup [0, 1]\)

    image

  2. Inner points

    \(\mathring{B}=(-1,0)\cup(0,1)\)

    image

  3. \(\partial B=\{-1,0,1\}\)

    image

Example

\(\text{Ex:} \quad X = [3,7) \cup (9,11) \cup (11,15) \cup [17,20].\)

image

\(\text{int}(X) = (3,7) \cup (9,11) \cup (11,15) \cup (17,20).\)

\(\text{ext}(X) = (-\infty, 3) \cup (7,9) \cup (15,17) \cup (20, \infty).\)

\(\text{Limit pts of } X: \quad [3,7] \cup [9,15] \cup [17,20].\)

\(\text{Limit pts of } X^c: \quad (-\infty, 3] \cup [7,9] \cup [15,17] \cup [20, \infty).\)

\(\text{Boundary pts of } X: \quad \{3, 7, 9, 15, 17, 20\}.\)

\(\text{Boundary pts of } X^c =\) same

Notation:

  1. \(\mathring X = \text{interior of } X\),

  2. \(\partial X = \text{boundary of } X\),

  3. \(\overline{X}=X\cup\partial X\) (we call this "closure of \(X\)").

Definition: We say that \(X\) is open if \(X = \mathring X\). We say that \(X\) is closed if \(X = \overline{X}\).

Example: \((a,b)\), \((a,\infty)\) are open. \([a,b]\), \([a,\infty)\) are closed. \([a,\infty)=[a,\infty)\cup\partial[a,\infty)\).