11.14 The exponential function
Example of theorem
Consider \(x \in \mathbb{R}\), \(\sum_{n=0}^{\infty} \frac{x^n}{n!}\) is A.C. \(\forall x\).(from)
From previous theorem: \(\sum_{k=0}^{\infty} \frac{x^k}{k!} \sum_{k=0}^{\infty} \frac{y^k}{k!} = \sum_{n=0}^{\infty} C_n\)
\(C_{n}=\sum_{k=0}^{n}a_{k}\cdot b_{n-k}=\sum_{k=0}^{n}\frac{x^{k}}{k!}\cdot\frac{y^{n-k}}{(n-k)!}\)
= \(\frac{1}{n!}\sum_{k=0}^{n}\frac{n!}{k!(n-k)!}x^{k}y^{n-k}=\frac{1}{n!}\sum_{k=0}^{n}\binom{n}{k}x^{k}y^{n-k}\) \(\Rightarrow C_n = \frac{(x + y)^n}{n!}\)
Therefore we have proved
Theorem: \(\left( \sum_{n=0}^{\infty} \frac{x^n}{n!} \right) \left( \sum_{n=0}^{\infty} \frac{y^n}{n!} \right) = \sum_{n=0}^{\infty} \frac{(x + y)^n}{n!}\)
The exponential function
Let us call \(\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad \forall x \in \mathbb{R}\).
We have proved: \(\exp(x + y) = \exp(x) \exp(y), \quad \forall x, y \in \mathbb{R}\).
We will see that \(\exp(q) = e^q, \quad \forall q \in \mathbb{Q}\).
Example
Recall that: \(e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2.71 \ldots\)
Parenthesis: \(2^x\) with \(x \in \mathbb{R}\)?
\(2^{5/2} = \sqrt{2^5} = \sqrt{32} = (2^{1/2})^5\)
\(2^{3/2} = \sqrt{2^3} = \sqrt{8} = (2^{1/2})^3\)
\(2^{\sqrt{2}} \approx 2^{1.414} = \sqrt[1000]{2^{1414}} = \left(\sqrt[1000]{2}\right)^{1414}\)
Theorem
\(\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n\)
#Method tool: Eliminating variable with limit#
Proof
We want to prove \(\lim_{n \to \infty} \sum_{k=0}^{n} \frac{x^k}{k!} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n\)
From the expansion: \(\left(1 + \frac{x}{n}\right)^n = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{x}{n}\right)^k 1^{n-k}\)
\(= \sum_{k=0}^{n} \frac{x^k}{k!} \cdot \frac{n!}{(n-k)! \, n^k}\) \(= \sum_{k=0}^{n} \frac{x^k}{k!} \cdot \frac{n (n-1) (n-2) \cdots (n-k+1)}{n^k}\)
\(= \sum_{k=0}^{n} \frac{x^k}{k!} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right)\).
This implies
-
\(\left(1+\frac{x}{n}\right)^{n}\leq\sum_{k=0}^{n}\frac{x^{k}}{k!}\Rightarrow\widetilde{\exp}(x)\leq\exp(x)\). (take limit)
-
Consider \(n > m\) arbitrary: \(\left(1+\frac{x}{n}\right)^{n}\geq\sum_{k=0}^{m}\frac{x^{k}}{k!}\left(1-\frac{k-1}{n}\right)^{k}\) where \((1 - \frac{k-1}{n}) > (1 - \frac{m}{n})\) for \(0 < k \leq m\).
Thus \(\geq(1-\frac{m}{n})^{m}\sum_{k=0}^{m}\frac{x^{k}}{k!}\)
Consider \(m\) fixed and take \(\lim_{n \to \infty}\): \(\widetilde{\exp}(x) \geq \sum_{k=0}^{m} \frac{x^k}{k!} \quad \forall m\)
Now \(\lim_{m \to \infty}\): \(\widetilde{\exp}(x) \geq \sum_{k=0}^{\infty} \frac{x^k}{k!} = \exp(x)\)
From (1) and (2): \(\widetilde{\exp}(x) = \exp(x)\)
Proposition
\(\exp(q) = e^q \quad \forall q \in \mathbb{Q}\)
Proof
We want to prove \(\lim_{n \to \infty} \left(1 + \frac{q}{n}\right)^n = \left(\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n\right)^q = e^q\)
-
Assume \(q \in \mathbb{N}\), \(\lim_{n \to \infty} \left(1 + \frac{q}{n}\right)^n\)
Trick: to cancel \(q\), consider \(n_k = q \cdot k\)
\(= \lim_{k \to \infty} \left(1 + \frac{q}{n_k}\right)^{n_k}\)\(= \lim_{k \to \infty} \left(1 + \frac{q}{q \cdot k}\right)^{q \cdot k}\)\(= \lim_{k \to \infty} \left(1 + \frac{1}{k}\right)^{q \cdot k}\)
\(= \left(\lim_{k \to \infty} \left(1 + \frac{1}{k}\right)^k\right)^q\)\(= e^q\)
-
Now let \(q = \frac{a}{b}\) with \(a, b \in \mathbb{N}\). We want to prove:
\(\lim_{n \to \infty} \left(1 + \frac{a/b}{n}\right)^n = \left[\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n\right]^{a/b}\)
\(\;\iff\;\left(\lim_{n\to\infty}\left(1+\frac{\frac{a}{b}}{n}\right)^{n}\right)^{b}=\left(\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n}\right)^{a}\)
Since \(a,b\in\N\), we already know in 1
\(\;\iff\;\lim_{n\to\infty}\left(1+\frac{\frac{a}{b}\cdot b}{n}\right)^{n}=\lim_{n\to\infty}\left(1+\frac{a}{n}\right)^{n}\)
This is true.
It remains \(q < 0\) and is left as exercise.
Summarizing
\(\exp(x) := \sum_{k=0}^{\infty} \frac{x^k}{k!}\) by definition
Theorem: \(\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n\)
Also: \(\exp(x + y) = \exp(x) \cdot \exp(y)\)
\(\exp(q) = e^q \quad \forall q \in \mathbb{Q}\)
\(\exp(1) = e\)
\(\exp(0) = 1\)
These define the exponential function.
Def: If \(x \in \mathbb{R}\), define \(e^x = \exp(x)\).
By definition, \(e = \exp(1) = \sum_{k=0}^{\infty} \frac{1^k}{k!} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2.71 \ldots\)
Topology
Definition
Let \(X\subseteq \R\) and \(x_0\in \R\), we say that
-
\(x_0\) is interior (inner point) of \(X\) if \(\exists\delta>0:(x_0-\delta,x_0+\delta)\subseteq X\)
Example: \(X=(3,5]\), \(x_0=4.6\) is interior and \(x_0=5\) is not
The set of inner points of \(X\) is denoted by \(\mathring{X}\)
-
\(x_0\) is an exterior point if \(\exists \delta > 0\) such that \((x_0-\delta,x_0+\delta)\cap X=\emptyset\)
Or if \(x_0\) is the interior of the \(X^c\) which is \((x_0-\delta,x_0+\delta)\subset X^{c}\Rightarrow(x_0-\delta,x_0+\delta)\cap X=\emptyset\)
-
\(x_0\) is limit point of \(X\) if \(\forall\delta>0:\left\lbrack(x_0-\delta,x_0)\cup(x_0,x_0+\delta)\right\rbrack\cap X\neq\emptyset\)
or \(:0<|x-x_0|<\delta\)
Example: \(x_0=5\) is limit point of \(X=(3,5]\)
\(x_0=3\) is limit point of \(X=(3,5]\)
\(x_0=5\) is not a limit point of \(X=(1,2)\cup \{5\}\cup(6,7)\)
-
\(x_0\) is a boundary point(extreme point) if \(\forall \delta > 0\), \(\exists y\in X,z\notin X\) with \(|x_0-y|<\delta\), \(|x_0-z|<\delta\)
The set of boundary points is denoted by \(\partial A\)
Equivalence: \(x_0\) is a boundary point of \(A\) if \(\forall \delta > 0 \quad (x_0 - \delta, x_0 + \delta) \cap A \neq \emptyset\) and \((x_0 - \delta, x_0 + \delta) \cap A^c \neq \emptyset\)
-
\(x_0\) is isolated point if \(x_0\in X\) and \(\exists \delta>0\) such that \((x_0-\delta,x_0+\delta)\cap X=\left\lbrace x_0\right\rbrace\)
Example
\(A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}\)
\(0 \notin A\)
-
Is \(0\) a limit point? Yes
\(\forall \delta > 0, \, \exists \, \frac{1}{N}\) such that \(\frac{1}{N} \in (0 - \delta, 0 + \delta) \cap A\)
Is \(1\) a limit point? No
-
Inner points
\(\mathring{A}=\emptyset\)
-
Exterior points
\((-\infty,0)\cup(1,+\infty)\cup\left(\frac{1}{n+1},\frac{1}{n}\right)_{n\in\mathbb{N}}\)
-
Boundary of A
\(\partial A=A\cup\{0\}\)
\(B=[-1,0)\cup(0,1)\)
-
Limit points \([-1, 0] \cup [0, 1]\)
-
Inner points
\(\mathring{B}=(-1,0)\cup(0,1)\)
-
\(\partial B=\{-1,0,1\}\)
Example
\(\text{Ex:} \quad X = [3,7) \cup (9,11) \cup (11,15) \cup [17,20].\)
\(\text{int}(X) = (3,7) \cup (9,11) \cup (11,15) \cup (17,20).\)
\(\text{ext}(X) = (-\infty, 3) \cup (7,9) \cup (15,17) \cup (20, \infty).\)
\(\text{Limit pts of } X: \quad [3,7] \cup [9,15] \cup [17,20].\)
\(\text{Limit pts of } X^c: \quad (-\infty, 3] \cup [7,9] \cup [15,17] \cup [20, \infty).\)
\(\text{Boundary pts of } X: \quad \{3, 7, 9, 15, 17, 20\}.\)
\(\text{Boundary pts of } X^c =\) same
Notation:
-
\(\mathring X = \text{interior of } X\),
-
\(\partial X = \text{boundary of } X\),
-
\(\overline{X}=X\cup\partial X\) (we call this "closure of \(X\)").
Definition: We say that \(X\) is open if \(X = \mathring X\). We say that \(X\) is closed if \(X = \overline{X}\).
Example: \((a,b)\), \((a,\infty)\) are open. \([a,b]\), \([a,\infty)\) are closed. \([a,\infty)=[a,\infty)\cup\partial[a,\infty)\).