10.28 Limit
Limit
Definition
Bound
\((a_n)\) is bounded if \(\exists M:|a_{n}|<M,\forall n\)
...bounded below if \(\exists M:a_{n}>M,\forall n\)
...bounded above if \(\exists M:a_{n}<M,\forall n\)
Important: look the tail of a sequence
Example
Suppose we know that \(|a_n|<100,\forall n>37000\), is \((a_n)\) bounded?
Suppose \(a_1=215,a_{39}=1357\), but it is bounded since \(|a_n|<MAX\{100,|a_1|,|a_2|,...,|a_{37000}|\}+1\)
Proposition
If \((a_n)\) is convergent \(\Rightarrow (a_n)\) is bounded.
Proof
\(\begin{aligned}\text{Let }l=\lim_{n\to\infty}a_{n}\end{aligned}\)
Let \(\varepsilon=1\), then \(\exists n_0\) such that \(\forall n>n_0\) we have \(|a_n-l|<1\)
Claim: \(|a_n|<|l|+1,\forall n>n_0\)
Analysis: We need \(|a_n|\leq M\) and we have \(|a_n-l|<1\), thus we want to use triangular inequality.
Trick: \(|a_{n}|=|a_{n}-l+l|\leq\left|a_{n}-l\right|+\left|l\right|<1+\left|l\right|=\left|l\right|+1\)
As in previous example: \(|a_n|<MAX\{|l|,|a_1|,|a_2|,...,|a_{n_0}|\}+1\)
The converse statement is false: A bounded sequence is convergent if FLASE
Example
-
\(a_n=(-1)^n\), \(|a_n|<2,\forall n\) but not convergent
-
\(a_{n}=\begin{cases}1~~~~~~~\text{ n is prime}\\ 0~~~~~~~\text{ n is composite}\end{cases}\)
Monotonic
A sequence \((a_n)\) is
- Monotonic increasing if \(a_{n+1}\geq a_n,\forall n\)
- Monotonic decreasing if \(a_{n+1}\leq a_{n},\forall n\)
Example
\(a_n=\frac1n\) is monotonic decreasing
Theorem
A is bounded monotonic increasing, then the sequence converges and \(\lim_{n\to\infty}a_{n}=sup\left(A\right)\)
Analysis
Since we need to prove \(\lim=\alpha\Rightarrow\left|a_{n}-\alpha\right|<\varepsilon\) and we know \(\alpha\) is a sup, then \(a_n\leq \alpha\) in particular
There is no absolute value of \(a_n\leq \alpha\)\, thus we need to do some operation to remove the absolute value in \(|a_n-\alpha|<\varepsilon\)
Then we have \(\alpha-\varepsilon<a_n<\alpha+\varepsilon\) Obviously since the equivalence definition of supremum
Proof
Since \(a_n\) is bounded, then we can take sup
Let \(\alpha=sup(a_{n})\Rightarrow\begin{cases}a_{n}\leq\alpha,\forall n,\alpha\text{ is upper bound}~\textcircled{1}\\ \exists a_{n}:\alpha-\varepsilon<a_{n}<\alpha,\forall\varepsilon~\textcircled{2}\end{cases}\)
We want to prove \(\lim_{n\to\infty}a_{n}=\alpha\)
Pick \(\varepsilon>0\), we must find \(n_0:\forall n>n_0\Rightarrow\alpha-\varepsilon<a_{n}<\alpha+\varepsilon\)
Since \(\textcircled{1}\), then \(a_n\leq \alpha<\alpha+\varepsilon\)
Since \(\textcircled{2}\), \(\exists n_0:\alpha-\varepsilon<a_{n_0}\Rightarrow\forall n>n_0:a_{n}\geq a_{n_0}>\alpha-\varepsilon\) (monotonic)
Therefore, \(\forall n>n_0\Rightarrow\alpha-\varepsilon<a_{n}<\alpha+\varepsilon\)
Corollary
A is bounded monotonic decreasing, then the sequence converges and \(\lim_{n\to\infty}a_{n}=inf\left(A\right)\)
Proposition
A sequence that it tail \(\forall n>n_0\) is bounded and monotonic increasing \(\Rightarrow\) \((a_n)\) is convergent and \(\lim_{n\to\infty}a_{n}=sup\left(a_{n}\right)\left(n>n_0\right)\)
Assume it tail is bounded by \(M\)
Since its tail is bounded and the remaining element is finite, then \(|a_{n}|<MAX\left\lbrace|a_1|,|a_2|,...|a_{n_0}|,M\right\rbrace+1\)
Thus the sequence is bounded.
...Similarly
Algebra of limits
Consider \((a_n)_{n\in N}\),\((b_n)_{n\geq 1}\) two convergent sequences
\(\lim_{n\to\infty}a_{n}=a\) \(\lim_{n\to\infty}b_{n}=b\)
-
\(\lim_{n\to\infty}(a_{n}+b_n)=a+b\)
To prove this, let \(\varepsilon>0\). We need to find \(n_0\in N\)
N.T.P \(|a_n+b_n-(a+b)|<\varepsilon\)
Note that \(|a_{n}+b_{n}-(a+b)|\leq|a_{n}-a|+|b_{n}-b|\)
Since \(a_n\rightarrow a\), we know that there is some \(n_0\in N||a_n-a|<\frac{\varepsilon}{2},~\forall n\geq n_0\)
Similarly, \(b_n\rightarrow b\) so we can take \(n_1\in N||b_n-b|<\frac{\varepsilon}{2},~\forall n\geq n_1\) more strict restrict
Then if \(n\geq max\{n_0,n_1\}\) we have that
\(|a_n+b_n-(a+b)|\leq |a_n-a|+|n_b+b|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\)
-
\(\lim_{n\to\infty}(a_{n}b_n)=ab\)
To prove this, consider \(\varepsilon >0\)
N.T.P. \(\exists n_0\in N||a_nb_n-ab|<\varepsilon~~\forall n\geq n_0\)
Note that \(|a_nb_n-ab|=|a_nb_n+a_nb-a_nb-ab|\leq |a_n(b_n-b)|+|b||a_n-a|\leq |a_n||b_n-b|+|b||a_n-a|\)
Now since \(a_n\) is convergent, there \(M\in R||a_n|\leq M~\forall n\in N\)
Then \(|a_nb_n-ab|\leq M|b_n-b|+|b||a_n-a|\) spilit into two parts
Consider \(n_1\in N||b_n-b|<\frac{\varepsilon}{2M}~\forall n\geq n_1(b_n\rightarrow b)\)
Also, \(n_2\in N||a_n-a|<\frac{\varepsilon}{2|b|}~\forall n\geq n_2(a_n\rightarrow a)\)
Then, if \(n\geq max\{n_1,n_2\},\) we have that
\(|a_nb_n-ab|\leq M|b_n-b|+|b||a_n-a|<M\frac{\varepsilon}{2M}+|b|\frac{\varepsilon}{2|b|}=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\)
But \(|b|\) can be 0, thus if \(|b|=0\), then \(|a_{n}b_{n}-ab|\leq M|b_{n}-b|\leq M\frac{\varepsilon}{2M}=\frac{\varepsilon}{2}<\varepsilon\)
-
If \(a\neq 0\), \(\lim_{n\to\infty}\frac{1}{a_{n}}=\frac{1}{a}\)
First, let \(\varepsilon=\frac{\left|a\right|}{2}>0\) because \(|a|\neq 0\)
Since \(\lim_{n\to\infty}a_{n}=a,\exists\tilde{n}:n>\tilde{n}\Rightarrow a-\frac{\left|a\right|}{2}<a_{n}<a+\frac{\left|a\right|}{2}\Rightarrow\begin{cases}if~a>0\Rightarrow0<a-\frac{a}{2}=\frac{a}{2}<a_{n}\\ if~a<0\Rightarrow a_{n}<a-\frac{a}{2}=\frac{a}{2}<0\end{cases}\Rightarrow a_{n}\neq0,\forall n>\tilde{n},\left|a_{n}\right|>\frac{\left|a\right|}{2}\)
We know \(\forall \varepsilon_1>0:\exists n_1:n>n_1\Rightarrow|a_n-a|<\varepsilon_1\)
Given \(\varepsilon>0\) we want \(n_0\) such that \(n>n_0\Rightarrow\left|\frac{1}{a_{n}}-\frac{1}{a}\right|<\varepsilon\)
Let \(\varepsilon_1=\frac{\left|a\right|^2\varepsilon}{2}\Rightarrow n_1:n>n_1\Rightarrow\left|a_{n}-a\right|<\frac{\left|a\right|^2\varepsilon}{2}\)
Now let \(n_0=MAX\{n_{1,}\tilde{n}\}\)
If \(n>n_0\Rightarrow n>\tilde{n},n_1\Rightarrow\left|\frac{1}{a_{n}}-\frac{1}{a}\right|=|\frac{a-a_{n}}{a_{n}a}|=\frac{\left|a_{n}-a\right|}{\left|a_{n}\right|\left|a\right|}<\frac{\left|a_{n}-a\right|}{\frac{\left|a\right|}{2}|a|}=\frac{2\left|a_{n}-a\right|}{\left|a\right|^2}<\frac{2}{\left|a\right|^2}\varepsilon_1=\varepsilon\)
-
If \(b\neq 0\), \(\lim_{n\to\infty}\frac{a_{n}}{b_n}=\frac{a}{b}\)
Lemma 1: If \(\lim_{n \to \infty} a_n = \ell\) and \(\ell > 0\), then there is a number \(X\) such that \(a_n > \frac{1}{2} \ell\) for all \(n > X\).
Proof: Since \(\frac{1}{2} \ell > 0\), the terms \(a_n\) must eventually lie within a distance \(\frac{1}{2} \ell\) of the limit \(\ell\).
In other words, there is a number \(X\) such that \(|a_n - \ell| < \frac{1}{2} \ell\) for all \(n > X\)
Hence \(-\frac{1}{2} \ell < a_n - \ell < \frac{1}{2} \ell\), for all \(n > X\) and so the left-hand inequality gives
\(\frac{1}{2} \ell < a_n\), for all \(n > X\), as required.
Proof: We assume that \(m > 0\); the proof for the case \(m < 0\) is similar. Once again, the idea is to write the required expression in terms of \(a_n - \ell\) and \(b_n - m\):
\[ \frac{a_n}{b_n} - \frac{\ell}{m} = \frac{m(a_n - \ell) - \ell(b_n - m)}{b_n m}. \]Now, however, there is a slight problem: \(\{m(a_n - \ell) - \ell(b_n - m)\}\) is certainly a null sequence, but the denominator is rather awkward. Some of the terms \(b_n\) may take the value \(0\), in which case the expression is undefined.
However, by Lemma 1, we know that for some \(X\) we have \(b_n > \frac{1}{2} m, \quad \text{for all } n > X.\)
Thus, for all \(n > X\):
\[ \left|\frac{a_n}{b_n} - \frac{\ell}{m}\right| = \frac{|m(a_n - \ell) - \ell(b_n - m)|}{b_n m}\leq \frac{|m(a_n - \ell) - \ell(b_n - m)|}{\frac{1}{2} m^2}\leq \frac{|m| \times |a_n - \ell| + |\ell| \times |b_n - m|}{\frac{1}{2} m^2}. \]
Example
-
We know \(\lim_{n\to\infty}\frac{1}{n}=0\Rightarrow\lim_{n\to\infty}\frac{1}{n^2}=0\) follows from theorem 2 \(\Rightarrow\lim_{n\to\infty}\frac{1}{n^{k}}=0,\forall k>0\) induction
-
If \(a_{n}=c\in\mathbb{R},\forall n\Rightarrow\lim_{n\to\infty}a_{n}=c\)
Given \(\varepsilon>0\), take \(n_0=1\), \(\forall n>n_0,|a_n-c|<\varepsilon\)
-
\(\lim_{n\to\infty}\frac{2}{n}=0\) follows from theorem 1 or follows from theorem 2 (using example 2)
-
\(\lim_{n\to\infty}\frac{3n+\pi+\frac{1}{\pi}n^2}{n^2}=\lim_{n\to\infty}\frac{3n}{n^2}+\lim_{n\to\infty}\frac{\pi}{n^2}+\lim_{n\to\infty}\frac{\frac{1}{\pi}n^2}{n^2}=\frac{1}{\pi}\)
Lemma (Sandwich)
Suppose \(a_n\leq b_n\leq c_n\) and \(\lim_{n\to\infty}a_{n}=\lim_{n\to\infty}c_{n}=l\Rightarrow\lim_{n\to\infty}b_{n}=l\)
Proof
We have \(l-\varepsilon<a_n<l+\varepsilon\) and \(l-\varepsilon<c_n<l+\varepsilon\), then \(l-\varepsilon<a_n\) and \(c_n<l+\varepsilon\)
Then since \(a_n\leq b_n\leq c_n\), then \(l-\varepsilon<b_n<l+\varepsilon\)
Easily, \(\lim b_n=l\)
Example
Let \(0<\alpha<1\), prove \(\lim_{n\to\infty}\alpha^{n}=0\)
Let us do the case \(\alpha=\frac12\), we have \(0<\left(\frac12\right)^{n}<\frac{1}{n}\)
Since \(\lim_{n\to\infty}\frac{1}{n}=0\), then we can apply it.
Exercise: do it for arbitrary \(\alpha\)
-
If \(\alpha >1\Rightarrow a_n=\alpha^n\) is NOT Bounded
Suppose that \(\{\alpha^n\}\) is bounded above, then let \(s=sup\{\alpha^{n}\}\)
Then \(s\geq\alpha^{n},\forall n\), then \(s\geq\alpha^{n+1}\Rightarrow\frac{s}{\alpha}\geq\alpha^{n},\forall n\)
Since \(\alpha>1\), then \(\frac{s}{\alpha}<s\), then \(\frac{s}{\alpha}\) is a supremum
Contradiction!
-
If \(0\leq \alpha <1\Rightarrow a_n=\alpha^n\) is convergent, \(\lim_{n\to\infty}a_{n}=0\)
Two proofs
-
If \(\alpha=0\Rightarrow a_{n}=0,\forall n\Rightarrow\lim_{n\to\infty}a_{n}=0\)
If \(0<\alpha<1\Rightarrow\frac{1}{\alpha}>1\Rightarrow\left(\frac{1}{\alpha}\right)^{n}\) is not bounded above since 1
Given \(\varepsilon>0\), let \(n_0\) such that \((\frac{1}{\alpha})^{n_0}>\frac{1}{\varepsilon}\Rightarrow\forall n>n_0:(\frac{1}{\alpha})^{n}>(\frac{1}{\alpha})^{n_0}>\frac{1}{\varepsilon}\Rightarrow\frac{1}{\alpha^{n}}>\frac{1}{\varepsilon}\Rightarrow\varepsilon>\alpha^{n}\Rightarrow\left|\alpha^{n}-0\right|<\varepsilon\) 2. \(a_n=\alpha^n\)
Since \(0<\alpha<1\Rightarrow\alpha^{n+1}<\alpha^{n}\Rightarrow a_{n+1}<a_{n}\Rightarrow\) monotonic decreasing
And \(\{a_n\}\) is bounded below by \(0\)
Then \(a_n\) is convergent to the \(infimum=l\)
Assume \(\lim_{n\to\infty}a_{n}=l\Rightarrow\lim_{n\to\infty}a_{n+1}=l\)
Since \(a_{n+1}=\alpha\cdot a_{n}\Rightarrow\lim_{n\to\infty}a_{n}=\alpha\cdot\lim_{n\to\infty}a_{n+1}\Rightarrow l=\alpha\cdot l\)
Since \(\alpha\neq 1\), then \(l=0\)
-
Method
3 Method to cope with the limit:
-
definition: directly take \(\varepsilon\) or the expression of \(\varepsilon\)
-
definition but take \(\varepsilon>\frac1n\) ... . You should prove \(|a_n-L|\) is bounded by \(\frac1n\)
(20 points) Prove that for all real number L \in (0,1), exists a sequence of rational numbers (a... use density to prove bounded by \(\frac1n\) here
Let A be a non-empty bounded set and s=\sup A. Prove that there exists a sequence (a_n) such tha... use the property of sup to prove bounded by \(\frac1n\) here
only when the question is about proving the existence of sequence!!!
-
take subsequence and use the limit of subsequence equals to limit of sequence
The sequence must have a specific expression firstly.
-
Squeeze theorem